小明在計算兩個代數(shù)式M與N的差時,誤看成求M與N的和,結(jié)果為7a2b-3ab2-3,若M=3a2b-2ab2+5,那么請幫小明求出本題的正確答案.
分析:根據(jù)和減去一個加數(shù)等于另外一個加數(shù),由M與N的和減去M,去括號合并確定出N,由M-N列出本題正確的算式,去括號合并即可得到結(jié)果.
解答:解:由題意可得:M+N=7a2b-3ab2-3,
∵M=3a2b-2ab2+5,
∴N=(7a2b-3ab2-3)-(3a2b-2ab2+5)=7a2b-3ab2-3-3a2b+2ab2-5=4a2b-ab2-8,
則M-N=(3a2b-2ab2+5)-(4a2b-ab2-8)=3a2b-2ab2+5-4a2b+ab2+8=-a2b-ab2+13.
點評:此題考查了整式的加減運算,涉及的知識有:去括號法則,以及合并同類項法則,熟練掌握法則是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
精英家教網(wǎng)
(1)如圖1,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為
 

(2)不改變圖1中燈泡的高度,將兩個邊長為30cm的正方形框架按圖2擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖3擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省南京學大教育專修學校九年級4月月考數(shù)學試卷(帶解析) 題型:解答題

小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為           .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子AB,DC的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子AB,DC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省淮安市中考模擬試卷3數(shù)學試卷(解析版) 題型:解答題

小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為           .

(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?

(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明在計算兩個代數(shù)式M與N的差時,誤看成求M與N的和,結(jié)果為7a2b-3ab2-3,若M=3a2b-2ab2+5,那么請幫小明求出本題的正確答案.

查看答案和解析>>

同步練習冊答案