已知兩個(gè)全等的直角三角形紙片ABC、DEF,如圖(1)放置,點(diǎn)B、D重合,點(diǎn)F在BC上,AB與EF交于點(diǎn)G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求證:△EGB是等腰三角形
(2)若紙片DEF不動(dòng),問(wèn)△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)最小 度時(shí),四邊形ACDE成為以ED為底的梯形(如圖(2))求此梯形的高.
(1)證明見解析;(2)3-2.
【解析】
試題分析:(1)根據(jù)題意,即可發(fā)現(xiàn)∠EBG=∠E=30°,從而證明結(jié)論;
(2)要使四邊形ACDE成為以ED為底的梯形,則需BC⊥DE,即可求得∠BFD=30°.再根據(jù)30°的直角三角形的性質(zhì)即可求解.
試題解析:(1)證明:∵∠C=∠EFB=90°,∠E=∠ABC=30°,
∴∠EBF=60°,
∴∠EBG=∠EBF-∠ABC=60°-30°=∠E.
∴GE=GB,
則△EGB是等腰三角形;
(2)解:要使四邊形ACDE成為以ED為底的梯形,
則需BC⊥DE,即可求得∠BFD=30°.
設(shè)BC與DE的交點(diǎn)是H.
在直角三角形DFE中,∠FDH=60°,DF=DE=2,
在直角三角形DFH中,F(xiàn)H=DF•cos∠BFD=2×cos30°=2×=.
則CH=BC-BH=AB•cos∠ABC-(BF-FH)=2-(2-)=3-2.
即此梯形的高是3-2.
考點(diǎn):1.梯形;2.等腰三角形的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆四川德陽(yáng)市中江縣柏樹中學(xué)九年級(jí)下學(xué)期第一次月考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,把兩個(gè)全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點(diǎn)A(1,2),過(guò)A、C兩點(diǎn)的直線分別交x軸、y軸于點(diǎn)E、F.拋物線y=ax2+bx+c經(jīng)過(guò)O、A、C三點(diǎn).
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段OC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交拋物線于點(diǎn)M,交x軸于點(diǎn)N,問(wèn)是否存在這樣的點(diǎn)P,使得四邊形ABPM為等腰梯形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若△AOB沿AC方向平移(點(diǎn)A始終在線段AC上,且不與點(diǎn)C重合),△AOB在平移過(guò)程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省寧波市江東區(qū)初三學(xué)業(yè)水平抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com