(2013•龍巖)如圖,邊長分別為4和8的兩個正方形ABCD和CEFG并排放在一起,連結BD并延長交EG于點T,交FG于點P,則GT=( 。
分析:根據(jù)正方形的對角線平分一組對角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,從而得到△DGT是等腰直角三角形,根據(jù)正方形的邊長求出DG,再根據(jù)等腰直角三角形的直角邊等于斜邊的
2
2
倍求解即可.
解答:解:∵BD、GE分別是正方形ABCD,正方形CEFG的對角線,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°-90°-45°=45°,
∴∠DTG=180°-∠GDT-∠CGE=180°-45°-45°=90°,
∴△DGT是等腰直角三角形,
∵兩正方形的邊長分別為4,8,
∴DG=8-4=4,
∴GT=
2
2
×4=2
2

故選B.
點評:本題考查了正方形的性質(zhì),主要利用了正方形的對角線平分一組對角,等腰直角三角形的判定與性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•龍巖)如圖,在平面直角坐標系xOy中,A(0,2),B(0,6),動點C在直線y=x上.若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•龍巖)如圖,AB∥CD,BC與AD相交于點M,N是射線CD上的一點.若∠B=65°,∠MDN=135°,則∠AMB=
70°
70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•龍巖)如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•龍巖)如圖①,在矩形紙片ABCD中,AB=
3
+1,AD=
3

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為
6
6
;
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為
3
-
1
2
3
-
1
2
;
(3)如圖④,將圖②中的△AED′繞點E順時針旋轉α角,得△A′ED″,使得EA′恰好經(jīng)過頂點B,求弧D′D″的長.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•龍巖)如圖,四邊形ABCD是菱形,對角線AC與BD交于點O,且AC=80,BD=60.動點M、N分別以每秒1個單位的速度從點A、D同時出發(fā),分別沿A→O→D和D→A運動,當點N到達點A時,M、N同時停止運動.設運動時間為t秒.
(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關于t的解析式,并求S的最大值;
(3)當t=30秒時,在線段OD的垂直平分線上是否存在點P,使得∠DPO=∠DON?若存在,這樣的點P有幾個?并求出點P到線段OD的距離;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案