【題目】已知,如圖,在ABC中,∠B <C,AD,AE分別是ABC的高和角平分線。

(1)若∠B=30°,C=50°,試確定∠DAE的度數(shù);

(2)試寫出∠DAE,B,C的數(shù)量關系,并證明你的結論。

【答案】(1)10°;(2)(C-B)(C-B),理由見解析

【解析】(1)在三角形ABC中,由∠B與∠C的度數(shù)求出∠BAC的度數(shù),根據(jù)AE為角平分線求出∠BAE的度數(shù),由∠BAD-B即可求出∠DAE的度數(shù);

(2)仿照(1)得出∠DAE與、∠B、C的數(shù)量關系即可.

解:(1)在ABC中,

∵∠B=30°,C=50°,

∴∠BAC=180°-B-C=180°-30°-50°=100°,

又∵AE平分∠BAC

∴∠BAE=BAC=50°,

ADBC,

∴∠BDA=90°,

∴∠BAD=180°-B-BDA=180°-30°-90°=60°,

∴∠DAE=BAD-BAE=60°-50°=10° ;

(2)ADBC,

∴∠BDA=90°,

∴∠BAD=180°-B-BDA=180°-B-90°=90°-B

又∵AE平分∠BAC,

∴∠BAE=BAC,

∴∠DAE=BAD-BAE=90°-B-BAC

=90°-B-(180°-B-C),

=(C-B)(C-B).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在學習擲硬幣的概率時,老師說:擲一枚質(zhì)地均勻的硬幣,正面朝上的概率是,小明做了下列三個模擬實驗來驗證.

取一枚新硬幣,在桌面上進行拋擲,計算正面朝上的次數(shù)與總次數(shù)的比值;

把一個質(zhì)地均勻的圓形轉盤平均分成偶數(shù)份,并依次標上奇數(shù)和偶數(shù),轉動轉盤,計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;

將一個圓形紙板放在水平的桌面上,紙板正中間放一個圓錐(如圖),從圓錐的正上方往下撒米粒,計算其中一半紙板上的米粒數(shù)與紙板上總米粒數(shù)的比值. 上面的實驗中,不科學的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以為原點的直角坐標系中,點的坐標為,直線軸于點.點為線段上一動點,作直線,交直線于點.過點作直線平行于軸,交軸于點,交直線于點.記,的面積為

)當點在第一象限時:求證:

)當點在線段上移動時,點也隨之在直線上移動,求出之間的函數(shù)關系式,并寫出自變量的取值范圍.

)當點在線段上移動時,是否可能成為等腰三角形?如果可能,直接寫出所有能使成為等腰三角形的的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明調(diào)查了全班本學期閱讀課外書的情況,并根據(jù)統(tǒng)計數(shù)據(jù),繪制如下的頻率分布折線圖和扇形統(tǒng)計圖。

根據(jù)以上信息,回答下列問題:

①這個班共有__________ 名學生,本學期閱讀量5本的有________

②這個班本學期閱讀量的中位數(shù)是_______ 本,眾數(shù)是 ______ 本;

③求全班本學期比上學期每名同學的平均閱讀量增加了多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABP中,CBP邊上一點,∠PAC=PBA,O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.(1)求證:PA是⊙O的切線;

(2)過點CCFAD,垂足為點F,延長CFAB于點G,若AG·AB=12,求AC的長;(3)在滿足(2)的條件下,若AFFD=12,GF=1,求⊙O的半徑及sinACE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程組解應用題:某學校在籌建數(shù)學實驗室過程中,準備購進一批桌椅,現(xiàn)有三種桌椅可供選擇:甲種每套150元,乙種每套210元,丙種每套250元。若該學校同時購買其中兩種不同型號的桌椅50套,恰好花費了9000元,則共有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為( )

A B C D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索:

(x-1)(x+1)=x2-1, (x-1)(x2+x+1)=x3-1,

(x-1)(x3+x2+x+1)=x4-1,    (x-1)(x4+x3+x2+x+1)=x5-1,

……

(1)試寫出第五個等式;

(2)試求26+25+24+23+22+2+1的值;

(3)判斷22 017+22 016+22 015+…+22+2+1的值的個位數(shù)字是幾.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. B. C. D.

查看答案和解析>>

同步練習冊答案