如圖,在△ABC中,BA=BC,過C點作CE⊥BC交∠ABC的角平分線BE于點E,連接AE,D是BE上的一點,且∠BAD=∠CAE.
求證:△ABD∽△ACE.
分析:先根據(jù)等腰三角形的性質(zhì)得出BE⊥AC,利用等角代換可證明出∠ABD=∠ACE,繼而可得出結(jié)論.
解答:解:∵BA=BC,BE平分∠ABC,
∴∠ABE=∠CBE,BE⊥AC(等腰三角形三線合一的性質(zhì)),
∴∠CBE+∠ACB=90°,
又∵CE⊥BC,
∴∠ACE+∠ACB=90°,
∴∠CBE=∠ACE,
∴∠ABE=∠ACE,
∵∠BAD=∠CAE,
∴△ABD∽△ACE.
點評:本題考查了相似三角形的判定,解答本題的關(guān)鍵是利用等腰三角形三線合一的性質(zhì)及等角代換的知識得出∠ABE=∠ACE,另外要求同學(xué)們掌握相似三角形的判定定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案