如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)D,AD平分∠CAB交弧于點(diǎn)D,連接CD、OD.下列結(jié)論:①AC∥OD;②CE=OE;③∠OED=∠AOD;④CD=DE.其中正確結(jié)論的個(gè)數(shù)有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:根據(jù)等腰三角形的性質(zhì)和角平分線的性質(zhì),利用等量代換求證∠CAD=∠ADO即可;過點(diǎn)E作EF⊥AC,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得OE=EF,再根據(jù)直角三角形斜邊大于直角邊可證;再根據(jù)內(nèi)角與外角的關(guān)系進(jìn)行判斷即可得出答案.
解答:解:①∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴①正確.
②過點(diǎn)E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于點(diǎn)D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴②錯(cuò)誤.
③∵在△ODE和△ADO中,
∠DEO=90°+∠DAO,
∠AOD=90°+∠COD,
∵∠DAO=∠COD,
∴③∠OED=∠AOD錯(cuò)誤;
④作ON⊥CD,
∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=×45°=22.5°,
∴∠COD=45°,
∵AB是半圓直徑,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∠AEO=90°-22.5°=67.5°,
∴∠DCE=∠CED=67.5°,
∴CD=DE,
∴④正確.
綜上所述,只有①④正確.
故選:B.
點(diǎn)評(píng):此題主要考查相似三角形的判定與性質(zhì),圓心角、弧、弦的關(guān)系,圓周角定理,等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識(shí)點(diǎn)的靈活運(yùn)用,此題步驟繁瑣,但相對(duì)而言,難易程度適中,很適合學(xué)生的訓(xùn)練是一道典型的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,連接CD、OD,給出以下四個(gè)結(jié)論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點(diǎn)E,交
BC
于點(diǎn)D,連接CD、OD,以下三個(gè)結(jié)論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項(xiàng),其中所有正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,連接CD、OD,給出以下四個(gè)結(jié)論:①AC∥OD;②CD=DE;③△ODE∽△ADO;④2CD2=CE•AB.其中正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•武漢模擬)如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)D,AD平分∠CAB交弧
BC
于點(diǎn)D,連接CD、OD.下列結(jié)論:①AC∥OD;②CE=OE;③∠OED=∠AOD;④CD=DE.其中正確結(jié)論的個(gè)數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•上城區(qū)二模)如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,交OC于點(diǎn)E,連接CD,OD.給出以下四個(gè)結(jié)論:①S△DEC=
2
S△AEO;②AC∥OD;③線段OD是DE與DA的比例中項(xiàng);④2CD2=CE•AB.其中結(jié)論正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案