【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達到節(jié)水的目的.該市自來水收費價格見價目表.

若某戶居民月份用水,則應(yīng)收水費:元.

1)若該戶居民月份用水,則應(yīng)收水費______元;

2)若該戶居民、月份共用水月份用水量超過月份),共交水費元,則該戶居民,月份各用水多少立方米?

【答案】148;(2)三月份用水.四月份用水11

【解析】

(1)根據(jù)表中收費規(guī)則即可得到結(jié)果;

(2)分兩種情況:用水不超過時與用水超過,但不超過時,再這兩種情況下設(shè)三月份用水,根據(jù)表中收費規(guī)則分別列出方程即可得到結(jié)果.

(1)應(yīng)收水費元.

(2)當三月份用水不超過時,設(shè)三月份用水,則

解之得,符合題意.

當三月份用水超過時,但不超過時,設(shè)三月份用水,

解之得(舍去)

所以三月份用水.四月份用水11

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下材料:

對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.

對數(shù)的定義:一般地,若ax=N(a0,a1),那么x叫做以a為底N的對數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對數(shù)式2=log525可以轉(zhuǎn)化為52=25.

我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:

設(shè)logaM=m,logaN=n,則M=am,N=an

MN=aman=am+n,由對數(shù)的定義得m+n=loga(MN)

又∵m+n=logaM+logaN

loga(MN)=logaM+logaN

解決以下問題:

(1)將指數(shù)43=64轉(zhuǎn)化為對數(shù)式_____

(2)證明loga=logaM﹣logaN(a0,a1,M0,N0)

(3)拓展運用:計算log32+log36﹣log34=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1個等式:1-=×

2個等式:(1-)(1-)=×

3個等式:(1-)(1-)(1-)=×

4個等式:(1-)(1-)(1-)(1-)=×

5個等式:(1-)(1-)(1-)(1-)(1-)=×

······

(1) 寫出第6個等式;

(2) 寫出第n個等式(用含n的等式表示),并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形ABC為一個電子跳蚤游戲盤,其中AB8,AC9,BC10.如果電子跳蚤開始時在BC邊上的點P0處,BP04,第一步跳蚤從點P0處跳到AC邊上的點P1處,且CP1CP0;第二步跳蚤從點P1處跳到AB邊上的點P2處,且AP1AP2;第三步跳蚤從點P2處跳回到BC邊上的點P3處,且BP3BP2……若跳蚤按上述規(guī)則跳下去,第n次的落點為Pn,則點P3與點P2019之間的距離為( )

A. 0 B. 1 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)43(x2)x.

(2)1.

(3)x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,EF切⊙O于點D,過點B作BH⊥EF于點H,交⊙O于點C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+ x+c與x軸的負半軸交于點A,與y軸交于點B,連結(jié)AB,點C(6, )在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標為m,求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向向內(nèi)旋轉(zhuǎn)35°到達ON位置,此時,點A、C的對應(yīng)位置分別是點B、D.測量出∠ODB為25°,點D到點O的距離為30cm.
(結(jié)果精確到1cm.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)

(1)求B點到OP的距離;
(2)求滑動支架的長.

查看答案和解析>>

同步練習冊答案