【題目】某小區(qū)開展了行車安全,方便居民的活動(dòng),對地下車庫作了改進(jìn).如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i12.4,ABBC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時(shí)點(diǎn)B、C、D在同一直線上).

1)求這個(gè)車庫的高度AB;

2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331

【答案】(1)這個(gè)車庫的高度AB為5米;(2)斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.

【解析】

1)根據(jù)坡比可得,利用勾股定理求出AB的長即可;(2)由(1)可得BC的長,由∠ADB的余切值可求出BD的長,進(jìn)而求出CD的長即可.

1)由題意,得:∠ABC90°,i12.4,

RtABC中,i,

設(shè)AB5x,則BC12x,

AB2+BC2AC2,

AC13x

AC13,

x1,

AB5,

答:這個(gè)車庫的高度AB5米;

2)由(1)得:BC12,

RtABD中,cotADC

∵∠ADC13°,AB5

DB5cot13°≈21.655m),

DCDBBC21.655129.655≈9.7(米),

答:斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某工廠要選一塊矩形鐵皮加工成一個(gè)底面半徑為20 cm,高為cm的圓錐形漏斗,要求只能有一條接縫(接縫忽略不計(jì)),請問:選長、寬分別為多少厘米的矩形鐵皮,才能使所用材料最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,M、N、C三點(diǎn)的坐標(biāo)分別為,1),(3,1),(3,0),點(diǎn)A為線段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過點(diǎn)Ay軸于點(diǎn)B,當(dāng)點(diǎn)AM運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲站到乙站有150千米,一列快車和一列慢車同時(shí)從甲站勻速開出,1小時(shí)后快車在慢車前12千米,快車到達(dá)乙站比慢車早25分鐘,快車和慢車每小時(shí)各行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD請證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)EF,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如圖的方式放置.點(diǎn)A1,A2,A3,…,An和點(diǎn)C1,C2C3,…,Cn分別落在直線yx+1和x軸上.拋物線L1過點(diǎn)A1,B1,且頂點(diǎn)在直線yx+1上,拋物線L2過點(diǎn)A2,B2,且頂點(diǎn)在直線yx+1上,…,按此規(guī)律,拋物線Ln過點(diǎn)An,Bn,且頂點(diǎn)也在直線yx+1上,其中拋物線L2交正方形A1B1C1O的邊A1B1于點(diǎn)D1,拋物線L3交正方形A2B2C2C1的邊A2B2于點(diǎn)D2,…,拋物線Ln+1交正方形AnBnCnCn-1的邊AnBn于點(diǎn)Dn(其中n≥2且n為正整數(shù)).

(1)直接寫出下列點(diǎn)的坐標(biāo):B1________,B2________,B3________;

(2)寫出拋物線L2、L3的解析式,并寫出其中一個(gè)解析式求解過程,再猜想拋物線Ln的頂點(diǎn)坐標(biāo)

(3)設(shè)A1D1=k1·D1B1,A2D2=k2·D2B2,試判斷k1與k2的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABO中,若OAOB2,⊙O的半徑為1,當(dāng)∠AOB滿足____________時(shí),直線AB與⊙O相切;當(dāng)∠AOB滿足____________時(shí),直線AB與⊙O相交;當(dāng)∠AOB滿足____________時(shí),直線AB與⊙O相離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鳳城中學(xué)九年級(3)班的班主任讓同學(xué)們?yōu)榘鄷顒?dòng)設(shè)計(jì)一個(gè)摸球方案,這些球除顏色外都相同,擬使中獎(jiǎng)概率為50%

1)小明的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入黃、白兩種顏色的球共6個(gè),攪勻后從中任意摸出1個(gè)球,摸到黃球則表示中獎(jiǎng),否則不中獎(jiǎng).如果小明的設(shè)計(jì)符合老師要求,則盒子中黃球應(yīng)有   個(gè),白球應(yīng)有   個(gè);

2)小兵的設(shè)計(jì)方案:在一個(gè)不透明的盒子中,放入2個(gè)黃球和1個(gè)白球,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球則表示中獎(jiǎng),否則不中獎(jiǎng),該設(shè)計(jì)方案是否符合老師的要求?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案