(2010•桂林)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點(diǎn)為F,F(xiàn)H∥BC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD;
(3)若EF=4,DE=3,求AD的長(zhǎng).

【答案】分析:(1)連接OF,通過切線的性質(zhì)證OF⊥FH,進(jìn)而由FH∥BC,得OF⊥BC,即可由垂徑定理得到F是弧BC的中點(diǎn),根據(jù)圓周角定理可得∠BAF=∠CAF,由此得證;
(2)求BF=FD,可證兩邊的對(duì)角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;觀察上述兩個(gè)式子,∠ABD、∠CBD是被角平分線平分∠ABC所得的兩個(gè)等角,而∠CBF和∠DAB所對(duì)的是等弧,由此可證得∠DBF=∠BDF,即可得證;
(3)由EF、DE的長(zhǎng)可得出DF的長(zhǎng),進(jìn)而可由(2)的結(jié)論得到BF的長(zhǎng);然后證△FBE∽△FAB,根據(jù)相似三角形得到的成比例線段,可求出AF的長(zhǎng),即可由AD=AF-DF求出AD的長(zhǎng).
解答:(1)證明:連接OF
∵FH是⊙O的切線
∴OF⊥FH(1分)
∵FH∥BC,
∴OF垂直平分BC(2分)

∴AF平分∠BAC(3分)

(2)證明:由(1)及題設(shè)條件可知
∠1=∠2,∠4=∠3,∠5=∠2(4分)
∴∠1+∠4=∠2+∠3
∴∠1+∠4=∠5+∠3(5分)
∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,
∴∠BDF=∠FBD,
∴BF=FD(6分)

(3)解:在△BFE和△AFB中
∵∠5=∠2=∠1,∠AFB=∠AFB,
∴△BFE∽△AFB(7分)
,(8分)
∴BF2=FE•FA
(9分),EF=4,BF=FD=EF+DE=4+3=7,

∴AD=AF-DF=AF-(DE+EF)==(10分)
點(diǎn)評(píng):此題主要考查了切線的性質(zhì)、圓周角定理及相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•桂林)如圖,過A(8,0)、B(0,)兩點(diǎn)的直線與直線交于點(diǎn)C、平行于y軸的直線l從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右平移,到C點(diǎn)時(shí)停止;l分別交線段BC、OC于點(diǎn)D、E,以DE為邊向左側(cè)作等邊△DEF,設(shè)△DEF與△BCO重疊部分的面積為S(平方單位),直線l的運(yùn)動(dòng)時(shí)間為t(秒).
(1)直接寫出C點(diǎn)坐標(biāo)和t的取值范圍;
(2)求S與t的函數(shù)關(guān)系式;
(3)設(shè)直線l與x軸交于點(diǎn)P,是否存在這樣的點(diǎn)P,使得以P、O、F為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•桂林)如圖,過A(8,0)、B(0,)兩點(diǎn)的直線與直線交于點(diǎn)C、平行于y軸的直線l從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右平移,到C點(diǎn)時(shí)停止;l分別交線段BC、OC于點(diǎn)D、E,以DE為邊向左側(cè)作等邊△DEF,設(shè)△DEF與△BCO重疊部分的面積為S(平方單位),直線l的運(yùn)動(dòng)時(shí)間為t(秒).
(1)直接寫出C點(diǎn)坐標(biāo)和t的取值范圍;
(2)求S與t的函數(shù)關(guān)系式;
(3)設(shè)直線l與x軸交于點(diǎn)P,是否存在這樣的點(diǎn)P,使得以P、O、F為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(06)(解析版) 題型:解答題

(2010•桂林)如圖是某地6月1日至6月7日每天最高、最低氣溫的折線統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)折線統(tǒng)計(jì)圖,回答下列問題:
(1)在這7天中,日溫差最大的一天是6月______日;
(2)這7天的日最高氣溫的平均數(shù)是______℃;
(3)這7天日最高氣溫的方差是______(℃)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2010•桂林)如圖,已知△ADE與△ABC的相似比為1:2,則△ADE與△ABC的面積比為( )

A.1:2
B.1:4
C.2:1
D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2010•桂林)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點(diǎn)為F,F(xiàn)H∥BC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD;
(3)若EF=4,DE=3,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案