如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.求證:

(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
證明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,∴BF=CE。
在△ABF和△DCE中,∵AB=DC,∠B=∠C,BF=CE,
∴△ABF≌△DCE(SAS)。
(2)∵△ABF≌△DCE,∴∠BAF=∠EDC。
∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,∴∠DAF=∠EDA。
∴△AOD是等腰三角形。

試題分析:(1)根據(jù)矩形的性質(zhì)可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“邊角邊”證明△ABF和△DCE全等即可。
(2)根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根據(jù)等腰三角形的定義證明即可。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,將長方形ABCD沿直線BD折疊,使C點落在C′處,BC′交AD于E.
(1)求證:BE=DE;
(2)若AD=8,AB=4,求△BED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點,連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有

A.1個         B.2個        C.3個        D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.

(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2013年四川廣安3分)下列命題中正確的是【   】
A.函數(shù)的自變量x的取值范圍是x>3
B.菱形是中心對稱圖形,但不是軸對稱圖形
C.一組對邊平行,另一組對邊相等四邊形是平行四邊形
D.三角形的外心到三角形的三個頂點的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形ABCD的周長為12cm,BC的垂直平分線EF經(jīng)過點A,則對角線BD的長是       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把矩形ABCD沿直線EF折疊,若∠1=20°,則∠2=
A.80°B.70°C.40°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD的對角線AC,BD相交于點O,AC=,BC=4,向矩形ABCD外作△CDE,使△CDE為等腰三角形,且點E在邊BC所在的直線上,請你畫出圖形,直接寫出OE的長,并畫出體現(xiàn)解法的輔助線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以△ABC的三邊為邊,在BC的同側(cè)作三個等邊△ABD、△BEC、△ACF.

(1)判斷四邊形ADEF的形狀,并證明你的結(jié)論;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADEF是菱形?是矩形?

查看答案和解析>>

同步練習(xí)冊答案