作業(yè)寶如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.
(1)求證:CD是⊙O的切線;
(2)若CB=2,CE=4,①求圓的半徑;②求DE、DF的長.

(1)證明:
連接OE,
∵OA=OE,
∴∠OAE=∠OEA,
∵AE平分∠CAD,
∴∠OAE=∠DAE,
∴∠OEA=∠DAE,
∴OE∥AD,
∵DE⊥AD,
∴OE⊥DE,
∵OE為半徑,
∴CD是⊙O的切線.
(2)解:①設⊙O的半徑是r,
∵CD是⊙O的切線,
∴∠OEC=90°,
由勾股定理得:OE2+CE2=OC2
即r2+42=(r+2)2,
r=3,
即⊙O的半徑是3.

 ②∵由(1)知:OE∥AD,
=,△COE∽△CAD,
=,=,
∴DE==,
=,
∴AD=,
連接BE、EF,
∵AB是直徑,
∴∠BEA=90°,
∴∠ABE+∠BAE=90°,
∵B、E、A、F四點共圓,
∴∠EFD=∠ABE,
∵AE平分∠CAD,
∴∠BAE=∠DAE,
∴∠DAE+∠EFD=90°,
∵ED⊥AD,
∴∠FED+∠EFD=90°,
∴∠DAE=∠FED,
∵∠D=∠D,
∴△EFD∽△AED,
=
∴DF===
分析:(1)連接OE,證OE∥AD,即可得出OE⊥CD根據(jù)切線判定推出即可.
(2)證△COE∽△CAD,求出DE,AD,證△DEF∽△DAF,推出DE2=DF×AD,即可求出DF.
點評:本題考查了相似三角形的性質(zhì)和判定,切線的性質(zhì)和判定,平行線性質(zhì),等腰三角形性質(zhì)的應用,注意:經(jīng)過半徑的外端且垂直于半徑的直線是圓的切線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案