(10分)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是圓外一點(diǎn),PA切⊙O于點(diǎn)A,且PAPB

1.(1)試說(shuō)明:PB是⊙O的切線;

2.(2)已知⊙O的半徑為AB=2,求PA的長(zhǎng).

 

【答案】

 

1.解:(1)連接OB,OP,交AB于點(diǎn)D

∵⊙O是Rt△ABC的外接圓,

∴AC是⊙O的直徑.……1分

又∵PA與⊙O相切,∴∠OAP=90°……2分

OAOB,PAPB,OPOP

∴△OAP≌△OBP……4分

∴∠OBP=∠OAP=90°,即OBBP.

又∵點(diǎn)B在⊙O上,∴PB是⊙O的切線. ……5分

2.(2) ∵∠ABC=∠OBP =90°, ∴∠OBC=∠ABP

又∵OCOBPAPB, ∴∠OCB=∠OBC=∠ABP=∠BAP∴△OCP∽△PAB……6分

  即……7分

而在Rt△ABC中, AB=2,AC=2BC=2……8分

PA……9分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,CD是Rt△ABC斜邊上的高,則圖中相似三角形的對(duì)數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高,E為AC的中點(diǎn),ED交CB的延長(zhǎng)線于F.
求證:BD•CF=CD•DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,M是Rt△ABC斜邊AB上的中點(diǎn),D是邊BC延長(zhǎng)線上一點(diǎn),∠B=2∠D,AB=16cm,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)二模)已知:如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點(diǎn)P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=PB.
(1)求證:PB是⊙O的切線; 
(2)已知PA=2
3
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BD是Rt△DAB和Rt△DCB的公共邊,∠A、∠C是直角,∠ADC=60°,BC=2cm,AD=5
3
cm,求DB、DC的長(zhǎng). (直角三角形中,30°角所對(duì)邊等于斜邊的一半)

查看答案和解析>>

同步練習(xí)冊(cè)答案