【題目】小紅爸爸上星期五買進(jìn)某公司股票1000股,每股28元,星期六和星期天不交易.下表為本周內(nèi)每日該股票的漲跌情況.(單位:元)
(1)通過上表你認(rèn)為星期五收盤時,每股是多少元?
(2)本周內(nèi)每股最高是多少?最低是多少元?
(3)已知股票買入時需交成交額1.5‰的交易費,賣出時需交成交額2.5‰的交易費.若星期五拋出,則小紅爸爸這筆股票交易盈虧如何?
【答案】(1)33.5;(2)本周內(nèi)每股最高是31.5元,最低是26.5元;(3)獲利263.2元.
【解析】
試題(1)根據(jù)正負(fù)數(shù)的意義,將漲跌的數(shù)相加計算即可得解;
(2)分別計算出每天的股價,即可得解;
(3)求出周六時的股價,然后求出獲得的利潤即可判斷.
試題解析:解:(1)28+3﹣1.5+3.5﹣0.5+1=33.5元;
(2)周一:28+3=31(元),周二:28﹣1.5=26.5(元),周三:28+3.5=31.5(元),周四:28﹣0.5=27.5(元),周五:28+1=29(元),所以,本周內(nèi)每股最高是31.5元,最低是26.5元;
(3)最后獲利:1000×28×(29﹣28)﹣1000×28×1.5‰﹣1000×28×(29﹣28)×2.5‰=2800×(1﹣1.5‰﹣2.5‰)=2800×94‰=263.2(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xoy中,拋物線y=(m﹣1)x2﹣(3m﹣4)x﹣3與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸是經(jīng)過(1,0)且與y軸平行的直線,點P是拋物線上的一點,點Q是y軸上一點;
(1)求拋物線的函數(shù)關(guān)系式;
(2)若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo);
(3)若tan∠PCB= ,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點E,F(xiàn)分別是CD和AB的中點,現(xiàn)將這張紙片折疊,使點B落在EF上的點G處,折痕為AH,若HG延長線恰好經(jīng)過點D,則CD的長為( )
A.2cm
B.2 cm
C.4cm
D.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題
(1)化簡并求值:-(3a2-4ab)+[a2-(a+2ab)] ,其中a=-2,b=1
(2)已知多項式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值與字母x的取值無關(guān),求a、b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
某管道由甲、乙兩工程隊單獨施工分別需要30天、20天.
(1)如果兩隊從管道兩端同時施工,需要多少天完工?
(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設(shè)計一個方案,并通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖l,BD是矩形ABCD的對角線,∠ABD=30,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點,連接AB’,C'D,AD’,BC’,如圖2.
(1)求證:四邊形AB'C'D是菱形:
(2)四邊形ABC'D'的周長為____:
(3)將四邊形ABC'D’沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出可能拼成的矩形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】考試前,同學(xué)們總會采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對該校九年級的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.學(xué)校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:
(1)這次抽樣調(diào)查中,一共抽查了多少名學(xué)生?
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)請計算扇形統(tǒng)計圖中“享受美食”所對應(yīng)扇形的圓心角的度數(shù);
(4)根據(jù)調(diào)查結(jié)果,估計該校九年級500名學(xué)生中采用“聽音樂”來減壓方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當(dāng)B在邊ON上運動時,A隨之在邊OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為( 。
A. +1 B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com