將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.

(1)求證:△ABE≌△AD′F;

(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.

答案:
解析:

  證明:⑴由折疊可知:∠D=∠,CD=A,∠C=∠AE.

  ∵四邊形ABCD是平行四邊形,

  ∴∠B=∠D,AB=CD,∠C=∠BAD.………2分

  ∴∠B=∠,AB=A,

  ∠AE=∠BAD,即∠1+∠2=∠2+∠3.

  ∴∠1=∠3.

  ∴△ABE≌△AF.……………4分

 、扑倪呅蜛ECF是菱形.

  由折疊可知:AE=EC,∠4=∠5.

  ∵四邊形ABCD是平行四邊形,∴AD∥BC.

  ∴∠5=∠6.∴∠4=∠6.∴AF=AE.

  ∵AE=EC,∴AF=EC.

  又∵AF∥EC,

  ∴四邊形AECF是平行四邊形.

  ∵AF=AE,

  ∴四邊形AECF是菱形.……………………………8分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

從邊長為a的大正方形紙板中間挖去一個邊長為b的小正方形后,將其截成四個相同的等腰梯形﹙如圖①﹚,可以拼成一個平行四邊形﹙如圖②﹚.
現(xiàn)有一平行四邊形紙片ABCD﹙如圖③﹚,已知∠A=45°,AB=6,AD=4.若將該紙片按圖②方式截成四個相同的等腰梯形,然后按圖①方式拼圖,則得到的大正方形的面積為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,平行四邊形紙片ABCD的面積為120,AD=20,AB=18.今沿兩對角線將四邊形ABCD剪成甲、乙、丙、丁四個三角形紙片.若將甲、丙合并(AD、CB重合)形成對稱圖形戊,如圖2所示,則圖形戊的兩條對角線長度之和是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,平行四邊形紙片ABCD的面積為120,AD=20,AB=18.今沿兩對角線將四邊形ABCD剪成甲、乙、丙、丁四個三角形紙片.若將甲、丙合并(AD、CB重合)形成一線對稱圖形戊,如圖2所示,則圖形戊的兩對角線長度和( 。
精英家教網(wǎng)
A、26
B、29
C、24
2
3
D、25
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德惠市二模)如圖,將平行四邊形紙片ABCD沿對角線AC折疊,點D落在點E處,AE恰好過BC邊中點,若AB=3,BC=6,則∠B的大小為( 。

查看答案和解析>>

同步練習(xí)冊答案