在直角三角形中,兩直角邊為3和4,則斜邊上的中線等于________.


分析:先根據(jù)勾股定理求出斜邊的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)解答.
解答:根據(jù)勾股定理得,斜邊==5,
∴斜邊上的中線=×5=
故答案為:
點評:本題考查了勾股定理以及直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:

       甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

       乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

       丙同學(xué):在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);

       (2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結(jié)合(2)的判定,推測丙同學(xué)的結(jié)論是否正確,并證明。

(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學(xué):在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結(jié)合(2)的判定,推測丙同學(xué)的結(jié)論是否正確,并證明
(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江西卷)數(shù)學(xué) 題型:解答題

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學(xué):在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結(jié)合(2)的判定,推測丙同學(xué)的結(jié)論是否正確,并證明
(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用”這個結(jié)論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省江陰市九年級上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:

        甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

        乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

        丙同學(xué):在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);

       (2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結(jié)合(2)的判定,推測丙同學(xué)的結(jié)論是否正確,并證明。

(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江西省中考真題 題型:解答題

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形。
結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形。
乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大。
丙同學(xué):在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小。
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結(jié)合(2)的判定,推測丙同學(xué)的結(jié)論是否正確,并證明。
(如圖,設(shè)銳角△ABC的三條邊分別為a,b,c,不妨設(shè)a>b>c,三條邊上的對應(yīng)高分別為ha,hb,hc,內(nèi)接正方形的邊長分別為xa,xb,xc,若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分)。

查看答案和解析>>

同步練習(xí)冊答案