【題目】如圖,在矩形ABCD中,點E、F分別在BC、CD上,將△ABE沿AE折疊,使點B落在AC上的點處,又將△CEF沿EF折疊,使點C落在射線EBˊAD的交點處,則的值( 。

A. 2 B. C. D.

【答案】D

【解析】

連接CC.首先證明四邊形ACCE是菱形,再證明△AEC是等邊三角形即可解決問題

連接CC′.

∵四邊形ABCD是矩形,ADBC,B=90°,∴∠CAE=AEB=AEC′,AC′=EC′.

EC=EC′,AC′=EC∴四邊形ACCE是平行四邊形

ACEC′,∴四邊形ACCE是菱形,AC′=AE=EC′,∴△AEC是等邊三角形,∴∠EAC′=60°,∴∠ACB=CAC′=EAC′=30°,∴∠BAC=60°.在RtABC,=tan60°=

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,點EBC邊上,AEAB,將線段ACA點旋轉(zhuǎn)到AF的位置使得∠CAF=∠BAE,連接EF,EFAC交于點G

1)求證:EFBC

2)若∠ABC=60,∠ACB=25,求∠FGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學農(nóng)期間我們完成了每日一題,進一步研究了角的平分線. 工人師傅常用角尺平分一個任意角. 作法如下:

如圖,∠AOB 是一個任意角,在邊 OAOB 上分別取 OM=ON, 移動角尺,使角尺兩邊相同的刻度分別與 M、N 重合. 過角尺頂點 C 的射線 OC 便是∠AOB 的平分線. 我們發(fā)現(xiàn)利用 SSS 證明兩個三角形全等,從而證明∠AOC=BOC.

學習了軸對稱的知識后,我們知道角是軸對稱圖形,角平分線 所在直線就是它的對稱軸,愛動腦筋的小慧同學利用軸對稱圖形的性質(zhì)發(fā)現(xiàn)了一種畫角平分線的方法.

方法如下:如圖 1,將兩個全等的三角形紙片△DEF 和△MNL 的一組對應邊分別與∠AOB 的一邊共線,同時這條邊所對頂點落在∠AOB 的另一條邊上,則△DEF 和△MNL 的另一組對應邊的交點 P 在∠AOB 的平分線上.

1)小慧的做法正確嗎?說明理由:

小旭說:利用軸對稱的性質(zhì),我只用刻度尺就可以畫角平分線.(提示:刻度尺可以度量出相等的線段)

2)請你和小旭一樣,只用刻度尺畫出圖 2 中∠QRS 的角平分線.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,ACCB,FAB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持ADCE.連接DEDF、EF

(1)求證:△ADF≌△CEF;

(2)試證明△DFE是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點D是反比例函數(shù)圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1ABAC,EFEGABCEFG,ADBC于點D,EHFG于點H

(1) 直接寫出AD、EH的數(shù)量關(guān)系:___________________

(2) EFG沿EH剪開,讓點E和點C重合

按圖2放置EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:ANGN

按圖3放置EHG,B、CE)、H三點共線,連接AGEH于點M.若BD1,AD3,求CM的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是正方形ABCDCD邊上一點,以點A為中心把△ADE順時針旋轉(zhuǎn)90°。

(1)在圖中畫出旋轉(zhuǎn)后的圖形;

(2)若旋轉(zhuǎn)后E點的對應點記為M,點FBC上,且∠EAF=45°,連接EF。

①求證:△AMF≌△AEF;

②若正方形的邊長為6,AE=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程有唯一實數(shù)解,且反比例函數(shù)的圖象在每個象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(觀察)

,,,……,,,,,……,,.

(發(fā)現(xiàn))

根據(jù)你的閱讀回答問題:

(1)上述內(nèi)容中,兩數(shù)相乘,積的最大值為______

(2)設(shè)參與上述運算的第一個因數(shù)為,第二個因數(shù)為,用等式表示的數(shù)量關(guān)系是____.

(類比)

觀察下列兩數(shù)的積:1×49,2×48,3×474×46,……m×n,……46×4,47×3,48×2,49×1

猜想的最大值為_______,并用你學過的知識加以證明.

查看答案和解析>>

同步練習冊答案