在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
解:(1)設(shè)此拋物線的函數(shù)解析式為:
y=ax2+bx+c(a≠0),
將A(﹣4,0),B(0,﹣4),C(2,0)
三點代入函數(shù)解析式得:
解得,
所以此函數(shù)解析式為:y=;
(2)∵M(jìn)點的橫坐標(biāo)為m,且點M在這條拋物線上,
∴M點的坐標(biāo)為:(m,),
∴S=S△AOM+S△OBM﹣S△AOB
=×4×(﹣m2﹣m+4)+×4×(﹣m)﹣×4×4
=﹣m2﹣2m+8﹣2m﹣8
=﹣m2﹣4m,
=﹣(m+2)2+4,
∵﹣4<m<0,
當(dāng)m=﹣2時,S有最大值為:S=﹣4+8=4.
答:m=﹣2時S有最大值S=4.
(3)設(shè)P(x, x2+x﹣4).
當(dāng)OB為邊時,根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,
∴Q的橫坐標(biāo)等于P的橫坐標(biāo),
又∵直線的解析式為y=﹣x,
則Q(x,﹣x).
由PQ=OB,得|﹣x﹣(x2+x﹣4)|=4,
解得x=0,﹣4,﹣2±2.
x=0不合題意,舍去.
如圖,當(dāng)BO為對角線時,知A與P應(yīng)該重合,OP=4.四邊形PBQO為平行四邊形則BQ=OP=4,Q橫坐標(biāo)為4,代入y=﹣x得出Q為(4,﹣4).
由此可得Q(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為1的正方形網(wǎng)格中,△ABC的三邊a,b,c的大小關(guān)系是 ( )
A. c<b<a B. c<a<b C. a<c<b D. a<b<c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成2個半圓,每一個扇形或半圓都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,列出所有等可能情況,并求出點(x,y)落在坐標(biāo)軸上的概率;
(2)直接寫出點(x,y)落在以坐標(biāo)原點為圓心,2為半徑的圓內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com