【題目】如圖,如圖,在菱形中,,,把菱形繞點順時針旋轉30°得到菱形,其中點的運動路徑為,則圖中陰影部分的面積為_________.
【答案】π+6-4
【解析】
連接CD'和BC',由菱形的性質以及旋轉角為30°,可得A、D'、C及A、B、C'分別共線,求出扇形面積,再根據AAS證得兩個小三角形全等,求得其面積,最后根據扇形ACC'的面積-兩個小的三角形面積即可解答.
解:CD'和BC'
∵在菱形中,∠DAB=60°,
∴∠DAC=∠CAB=30°
∵旋轉角為30°
∴A、D'、C共線,同理:A、B、C'共線;
∴AC=2
∴扇形ACC'的面積為:
∵AC=AC', AD'=AB
∴在△OCD'和△OC'B中
∴△OCD'≌△OC'B(AAS)
∴OB=OD', CO=OC'
∵∠CBC'=60°,∠BC'O=30°
∴∠COD'=90°
∴C D'=AC'-AD=2-2, OD'=2- OC
∵AC=2
∴在Rt△D'OC中,解得:OD'=sin30°·C D'=-1,OC= cos30°·C D'=3-
∴S△D'OC= S△OC'B=2-3
∴陰影部分的面積為:π-2(2-3)= π+6-4
故答案為:π+6-4.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,點E,F是對角線AC的三等分點,點P在正方形的邊上,則滿足PE+PF=的點P的個數是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x﹣2與x軸,y軸分別交于點D,C.點G,H是線段CD上的兩個動點,且∠GOH=45°,過點G作GA⊥x軸于A,過點H作HB⊥y軸于B,延長AG,BH交于點E,則過點E的反比例函數y=的解析式為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=kx+b與x軸、y軸分別交于A、B兩點,與反比例函數交于一象限內的P(,n),Q(4,m)兩點,且tan∠BOP=:
(1)求反比例函數和直線的函數表達式;
(2)求△OPQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
⑴求證:四邊形BEDF為菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).
(1)∠DCB= 度,當點G在四邊形ABCD的邊上時,x= ;
(2)在點E,F的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;
(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數關系式,當x取何值時,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=a(x2+2mx﹣3m2)(其中a,m是常數a<0,m>0)的圖象與x軸分別交于A、B(點A位于點B的右側),與y軸交于點C(0,3),點D在二次函數的圖象上,CD∥AB,連結AD.過點A作射線AE交二次函數的圖象于點E,AB平分∠DAE.
(1)求a與m的關系式;
(2)求證:為定值;
(3)設該二次函數的圖象的頂點為F.探索:在x軸的正半軸上是否存在點G,連結GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數式表示該點的橫坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點D、E分別是邊BC、AC的中點,連接DE.將△CDE繞點C逆時針方向旋轉,記旋轉角為α.
(1)問題發(fā)現
①當α=0°時,=_______;
②當α=180°時,=______.
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
△CDE繞點C逆時針旋轉至A、B、E三點在同一條直線上時,求線段BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y=x(x≥0)的圖象與反比例函數y=的圖象交于點A,若點A繞點B(,0)順時針旋轉90°后,得到的點A'仍在y=的圖象上,則點A的坐標為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com