如圖,在正方形ABCD中,CE⊥DF.若CE=10cm,
(1)求證:EC=FD;
(2)求DF的長.

(1)證明:在正方形ABCD中,BC=CD,∠B=∠BCD=90°,
∵CE⊥DF,
∴∠CDF+∠DCE=90°,
又∵∠BCE+∠DCE=90°,
∴∠BCE=∠CDF,
在△BCE和△CDF中,
,
∴△BCE≌△CDF(ASA),
∴EC=FD;

(2)根據(jù)(1)有EC=FD,
∵CE=10cm,
∴FD=10cm.
分析:(1)根據(jù)正方形的性質可得BC=CD,∠BCD=90°,然后求出∠BCE=∠CDF,再利用“角邊角”證明△BCE和△CDF全等,根據(jù)全等三角形對應邊相等即可得證;
(2)根據(jù)(1)的結論代入數(shù)據(jù)即可得解.
點評:本題考查了正方形的性質,全等三角形的判定與性質,根據(jù)同角的余角相等求出∠BCE=∠CDF是解題的關鍵,也是本題的難點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖:在正方形網格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案