如圖,⊙O是△ABC的外接圓,∠A=50°,則∠BCO的度數(shù)是( )

A.30°
B.40°
C.50°
D.60°
【答案】分析:首先根據(jù)∠A的度數(shù),求出∠BOC=100°,然后由OB=OC,即可推出∠BCO=∠CBO,再由三角形內(nèi)角和定理推出結(jié)果.
解答:解:∵⊙O是△ABC的外接圓,∠A=50°,
∴∠BOC=100°,
∵OB=OC,
∴∠BCO=∠CBO=(180°-100°)÷2=40°.
故選B.
點評:本題主要考查圓的內(nèi)接三角形的性質(zhì),圓周角定理,等腰三角形的性質(zhì)及三角形內(nèi)角和定理等知識點的綜合運用,關(guān)鍵在于根據(jù)題意推出∠BOC的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點D、交⊙O于點E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案