關(guān)于x的方程數(shù)學(xué)公式
(1)若方程的解與的k值都是最大的負(fù)整數(shù),且a與b互為相反數(shù)時,對于任意的有理數(shù)m,指出多項(xiàng)式(|m|+2k)ya-b+(2-m)ya+3y3+5y2-1的次數(shù);
(2)若無論k為何值,方程的解總是1,求a,b的值.

解:(1)以題意有,x=-1,k=-1,a+b=0,
所以,-b=a,
所以,原方程可化為=2+
解得a=7,
所以,b=-a=-7,
a-b=7-(-7)=14,
∵m是任意有理數(shù),
∴①當(dāng)m=-2時,有|m|+2k=0,2-m=4,則多項(xiàng)式的次數(shù)為7;
②當(dāng)m=2時,有|m|+2k=0,2-m=0,則多項(xiàng)式的次數(shù)為3;
③當(dāng)m≠±2時,|m|+2k≠0,則多項(xiàng)式的次數(shù)為14;

(2)把x=1代入原方程得,=2+,
去分母得,4k+2a=12+1+bk,
移項(xiàng)并整理得,(4-b)k=13-2a,
∵無論k為何值,方程的解總是1,
∴13-2a=0且4-b=0,
解得a=,b=4.
分析:(1)先求出x、k的值,根據(jù)相反數(shù)的定義求出a+b=0,然后代入方程求出a的值,再求出b的值,然后對多項(xiàng)式整理,再分情況討論求解;
(2)把方程的解代入方程得到關(guān)于k、a、b的方程,然后整理成關(guān)于k的方程,根據(jù)方程的解與k值無關(guān)可知系數(shù)等于0,然后求解即可.
點(diǎn)評:本題考查了解一元一次方程,多項(xiàng)式的次數(shù),一元一次方程的解,題目比較復(fù)雜,要注意對多項(xiàng)式的系數(shù)為0的情況進(jìn)行討論求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程(k2-4)x2+
k-1
x+5=0是一元二次方程,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知x=2是關(guān)于x的方程3x-3=k的解,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直角△ABC的三邊a、b、c均滿足關(guān)于x的方程x2-mx+
2
=0
,則△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x=-2是關(guān)于x的方程
12
(1-2ax)=x+a的解,則a的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程:(m-2)xm2-m+(m-1)x+6=0是一元二次方程,試求m的值.

查看答案和解析>>

同步練習(xí)冊答案