已知:如圖①,在中,,,,點(diǎn)由出發(fā)沿方向向點(diǎn)勻速運(yùn)動,速度為1cm/s;點(diǎn)由出發(fā)沿方向向點(diǎn)勻
速運(yùn)動,速度為2cm/s;連接.若設(shè)運(yùn)動的時間為(),解答下列問題:
(1)當(dāng)為何值時,?
(2)設(shè)的面積為(),求與之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻,使線段恰好把的周長和面積同時平分?若存在,求出此時的值;若不存在,說明理由;
(4)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時刻,使四邊形為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
(1);(2);(3)不存在;(4),
解析試題分析:(1)當(dāng)PQ∥BC時,可得出三角形APQ和三角形ABC相似,根據(jù)相似三角形的對應(yīng)邊成比例即可求得結(jié)果;
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時間t表示出來.關(guān)鍵是高,可以用AP和∠A的正弦值來求.AP的長可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出x,y的函數(shù)關(guān)系式.
(3)如果將三角形ABC的周長和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長,那么可以求出此時t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時刻.
(4)我們可通過構(gòu)建相似三角形來求解.過點(diǎn)P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個矩形,解題思路:通過三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長,也就表示出了MC的長,要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點(diǎn),QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長,就可以根據(jù)AC=AQ+QM+MC來求出t的值.求出了t就可以得出QM,CM和PM的長,也就能求出菱形的邊長了.
(1)在Rt△ABC中,,
由題意知:AP=5-t,AQ=2t,若PQ∥BC,則△APQ∽△ABC,
,
解得,
所以當(dāng)時,PQ∥BC;
(2)如圖,過點(diǎn)P作PH⊥AC于H,
∵△APH∽△ABC,
,
,
;
(3)若PQ把△ABC周長平分,則AP+AQ=BP+BC+CQ,
∴(5-t)+2t=t+3+(4-2t),解得t=1,
若PQ把△ABC面積平分,則,即,
∵t=1代入上面方程不成立,
∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.
(4)過點(diǎn)P作PM⊥AC于M,PN⊥BC于N,
若四邊形PQP'C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC,
,
,
解得,
解得,
當(dāng)時,四邊形PQP'C是菱形.
此時,,
在Rt△PMC中,,
∴菱形PQP′C邊長為
考點(diǎn):本題考查的是相似三角形的綜合應(yīng)用
點(diǎn)評:解答本題的關(guān)鍵是正確作出輔助線,找到相似的三角形,靈活運(yùn)用相似三角形的對應(yīng)邊成比例的性質(zhì)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com