(2003•蘇州)在△ABC中,若AB=9,BC=6,則第三邊CA的長度的取值范圍是( )
A.3<CA<9
B.6<CA<9
C.9<CA<15
D.3<CA<15
【答案】分析:根據(jù)三角形的三邊關(guān)系,即可求解.
解答:解:第三邊大于兩邊之差,而小于兩邊之和,即3<CA<15.故選D.
點評:考查了三角形的三邊關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年江西省撫州市臨川區(qū)羅湖中學數(shù)學中考模擬試卷(三)(解析版) 題型:解答題

(2003•蘇州)OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6.
(1)如圖1,在OA上選取一點G,將△COG沿CG翻折,使點O落在BC邊上,記為E,求折痕y1所在直線的解析式;
(2)如圖2,在OC上選取一點D,將△AOD沿AD翻折,使點O落在BC邊上,記為E'.
①求折痕AD所在直線的解析式;
②再作E'F∥AB,交AD于點F.若拋物線y=-x2+h過點F,求此拋物線的解析式,并判斷它與直線AD的交點的個數(shù).
(3)如圖3,一般地,在OC、OA上選取適當?shù)狞cD'、G',使紙片沿D'G'翻折后,點O落在BC邊上,記為E''.請你猜想:折痕D'G'所在直線與②中的拋物線會有什么關(guān)系?用(1)中的情形驗證你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(萬向初中 莊國軍)(解析版) 題型:解答題

(2003•蘇州)OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6.
(1)如圖1,在OA上選取一點G,將△COG沿CG翻折,使點O落在BC邊上,記為E,求折痕y1所在直線的解析式;
(2)如圖2,在OC上選取一點D,將△AOD沿AD翻折,使點O落在BC邊上,記為E'.
①求折痕AD所在直線的解析式;
②再作E'F∥AB,交AD于點F.若拋物線y=-x2+h過點F,求此拋物線的解析式,并判斷它與直線AD的交點的個數(shù).
(3)如圖3,一般地,在OC、OA上選取適當?shù)狞cD'、G',使紙片沿D'G'翻折后,點O落在BC邊上,記為E''.請你猜想:折痕D'G'所在直線與②中的拋物線會有什么關(guān)系?用(1)中的情形驗證你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年江蘇省蘇州市中考數(shù)學試卷(解析版) 題型:解答題

(2003•蘇州)OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6.
(1)如圖1,在OA上選取一點G,將△COG沿CG翻折,使點O落在BC邊上,記為E,求折痕y1所在直線的解析式;
(2)如圖2,在OC上選取一點D,將△AOD沿AD翻折,使點O落在BC邊上,記為E'.
①求折痕AD所在直線的解析式;
②再作E'F∥AB,交AD于點F.若拋物線y=-x2+h過點F,求此拋物線的解析式,并判斷它與直線AD的交點的個數(shù).
(3)如圖3,一般地,在OC、OA上選取適當?shù)狞cD'、G',使紙片沿D'G'翻折后,點O落在BC邊上,記為E''.請你猜想:折痕D'G'所在直線與②中的拋物線會有什么關(guān)系?用(1)中的情形驗證你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年江蘇省蘇州市中考數(shù)學試卷(解析版) 題型:選擇題

(2003•蘇州)在△ABC中,若AB=9,BC=6,則第三邊CA的長度的取值范圍是( )
A.3<CA<9
B.6<CA<9
C.9<CA<15
D.3<CA<15

查看答案和解析>>

同步練習冊答案