在矩形ABCD中,DC=2數(shù)學(xué)公式,CF⊥BD分別交BD、AD于點(diǎn)E、F,連接BF.
(1)求證:△DEC∽△FDC;
(2)當(dāng)F為AD的中點(diǎn)時(shí),求sin∠FBD的值及BC的長(zhǎng)度.

解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD,
∴△DEC∽△FDC.

(2)∵F為AD的中點(diǎn),AD∥BC,
∴FE:EC=FD:BC=1:2,F(xiàn)B=FC,
∴FE:FC=1:3,
∴sin∠FBD=EF:BF=EF:FC=;
設(shè)EF=x,則FC=3x,
∵△DEC∽△FDC,
=,即可得:6x2=12,
解得:x=,
則CF=3,
在Rt△CFD中,DF==
∴BC=2DF=2
分析:(1)根據(jù)題意可得∠DEC=∠FDC,利用兩角法即可進(jìn)行相似的判定;
(2)根據(jù)F為AD的中點(diǎn),可得FB=FC,根據(jù)AD∥BC,可得FE:EC=FD:BC=1:2,再由sin∠FBD=EF:BF=EF:FC,即可得出答案,設(shè)EF=x,則EC=2x,利用(1)的結(jié)論求出x,在Rt△CFD中求出FD,繼而得出BC.
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是掌握相似三角形的判定定理及相似三角形的性質(zhì):對(duì)應(yīng)邊成比例.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點(diǎn)E,EF⊥AD交AD于點(diǎn)F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點(diǎn)不重合的動(dòng)點(diǎn),過點(diǎn)P的直線交CD的延長(zhǎng)線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點(diǎn),AF的延長(zhǎng)線交DC的延長(zhǎng)線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個(gè)角的角平分線,E、M、F、N是其交點(diǎn),求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案