28、已知a+b=3,a3+b3=9,則ab等于( 。
分析:根據(jù)條件a+b=3,兩邊平方可求得a2+b2=9-2ab,再把條件a3+b3=9展成(a+b)和ab的形式,整體代入即可求得ab的值.
解答:解:∵a+b=3,
∴(a+b)2=a2+2ab+b2=9,
∴a2+b2=9-2ab,
∵a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab)]=9,
∴ab=2.
故選B.
點(diǎn)評:主要考查了完全公式的應(yīng)用.要注意完全平方公式:(a±b)2=a2±2ab+b2,對a3+b3的準(zhǔn)確分解是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知a1,a2,a3,a4,a5是滿足條件a1+a2+a3+a4+a5=9的五個(gè)不同的整數(shù),若b是關(guān)于x的方程(x-a1)(x-a2)(x-a3)(x-a4)(x-a5)=2009的整數(shù)根,則b的值為
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、已知a1、a2、a3、a4、a5為非負(fù)有理數(shù),且M=(a1+a2+a3+a4)(a2+a3+a4+a5),N=(a1+a2+a3+a4+a5)(a2+a3+a4),試比較M、N的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A1,A2,A3,…,A2012是x軸上的點(diǎn),且0A1=A1A2=A2A3=…=A2010A2011=A2011A2012=1,分別過點(diǎn)A1,A2,A3,…,A2012作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點(diǎn)P1,P2,P3,…,P2012,若△OA1P1的面積為S1,過點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3,…依次進(jìn)行下去,最后記△P2011B2011P2012的面積為S20121,則
s1+s2+s3+…+s2012
等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x、y、z的方程組
x+y=a1
y+z=a2
z+x=a3
中,已知a1>a2>a3,那么將x、y、z從大到小排起來應(yīng)該是( 。

查看答案和解析>>

同步練習(xí)冊答案