(2010•攀枝花)如圖所示,在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出以下四個(gè)結(jié)論:①BE=AF,②S△EPF的最小值為,③tan∠PEF=,④S四邊形AEPF=1,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),上述結(jié)論始終正確是   
【答案】分析:根據(jù)全等三角形的判定和等腰三角形的性質(zhì),對(duì)題中選項(xiàng)一一證明,得出正確結(jié)果.
解答:解:連接PA.
∵AB=AC,∠BAC=90°,P是BC的中點(diǎn),
∴PA=PC,∠APC=90°,∠PAE=∠PCF=45°.
∵∠FPE=∠APC=90°,
∴∠CPF=∠APE.
∵PA=PC,∠PAE=∠PCF,
∴△CFP≌△AEP.
∴AE=CF.
∵AB-AE=AC-CF,
∴BE=AF,故①始終正確;
∵△CFP≌△AEP,
∴PE=PF.
∵∠EPF=90°,
∴△EPF為等腰直角三角形.
∴∠PEF=45°.
∴tan∠PEF=1,故③錯(cuò)誤;
∵PA=BP,∠B=∠PAF,BE=AF,
∴△EBP≌△PAF.
∵S△EBP+S△AEP+S△PAF+S△CFP=S△ABC,S△AEP+S△PAF=S四邊形AEPF
∴S四邊形AEPF=S△ABC=(2×2÷2)=1,故④正確;
∴S△EPF的最小值為,故②正確.
故選①②④.
點(diǎn)評(píng):本題把全等三角形的判定和等腰三角形的性質(zhì)結(jié)合求解.綜合性強(qiáng),難度較大.考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2010•攀枝花)如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線y=(k≠0)與△ABC有交點(diǎn),則k的取值范圍是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2010•攀枝花)如圖所示.△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小是( )

A.56°
B.62°
C.28°
D.32°

查看答案和解析>>

同步練習(xí)冊(cè)答案