有一塊正方形的土地,現(xiàn)要在其上修筑兩條筆直的道路,并將這片土地分成形狀相同且面積相等的四部分,若道路的寬度不計(jì),請(qǐng)?jiān)趫D1、圖2和圖3所示的三個(gè)正方形上分別畫出示意圖.
分析:①由正方形的性質(zhì)知,連接對(duì)邊的中點(diǎn),能把正方形分成四個(gè)小的正方形,且每個(gè)的面積相等;
②由正方形的性質(zhì)知,它的兩個(gè)對(duì)角線把正方形分成面積相等的四部分,故作出正方形的對(duì)角線即可;
③由于正方形是中心對(duì)稱圖形,故過(guò)對(duì)稱中心的兩條互相垂直的直線能把正方形分成面積相等的四部分面積.
解答:解:道路的設(shè)計(jì)如圖5-1、圖5-2和圖5-3所示;
點(diǎn)評(píng):考查了作圖-應(yīng)用與設(shè)計(jì)作圖,本題利用了正方形的性質(zhì),中點(diǎn)的性質(zhì),正方形是中心對(duì)稱圖形求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

23、閱讀理解:如圖(1),已知直線m∥n,A、B 為直線n上兩點(diǎn),C、D為直線m上兩點(diǎn),容易證明:△ABC的面積=△ABD的面積.
根據(jù)上述內(nèi)容解決以下問(wèn)題:已知正方形ABCD的邊長(zhǎng)為4,G是邊CD上一點(diǎn),以CG為邊作正方形GCEF.
(1)如圖(2),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),△BDF的面積為
8

(2)如圖(3),當(dāng)點(diǎn)G是CD的中點(diǎn)時(shí),△BDF的面積為
8

(3)如圖(4),當(dāng)CG=a時(shí),則△BDF的面積為
8
,并說(shuō)明理由.
探索應(yīng)用:小張家有一塊正方形的土地如圖(5),由于修建高速公路被占去一塊三角形BCP區(qū)域.現(xiàn)決定在DP右側(cè)補(bǔ)給小張一塊土地,補(bǔ)償后,土地變?yōu)樗倪呅蜛BMD,要求補(bǔ)償后的四邊形ABMD的面積與原來(lái)形正方形ABCD的面積相等且M在射線BP上,請(qǐng)你在圖中畫出M點(diǎn)的位置,并簡(jiǎn)要敘述做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:正方形ABCD的邊長(zhǎng)為a,P是邊CD上一個(gè)動(dòng)點(diǎn)不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.


觀察計(jì)算:
(1)如圖1,當(dāng)a=4,b=1時(shí),四邊形ABFD的面積為
16

(2)如圖2,當(dāng)a=4,b=2時(shí),四邊形ABFD的面積為
16
;
(3)如圖3,當(dāng)a=4,b=3時(shí),四邊形ABFD的面積為
16
;
探索發(fā)現(xiàn):
(4)根據(jù)上述計(jì)算的結(jié)果,你認(rèn)為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關(guān)系?證明你的結(jié)論;
綜合應(yīng)用:
(5)農(nóng)民趙大伯有一塊正方形的土地(如圖5),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側(cè)補(bǔ)給趙大伯一塊土地,補(bǔ)償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來(lái)正方形土地的面積相等,M、E、B三點(diǎn)要在一條直線上,請(qǐng)你畫圖說(shuō)明,如何確定M點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一位父親有4個(gè)兒子,他有一塊正方形的土地,其中的四分之一留給了自己(如圖),余下的分給他的4個(gè)兒子,他想使每個(gè)兒子獲得的土地面積相等,形狀相同,這位父親應(yīng)怎樣完成這件事?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省衢州華外九年級(jí)第一學(xué)期第三次質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題10分)已知:正方形ABCD的邊長(zhǎng)為a,P是邊CD上一個(gè)動(dòng)點(diǎn)不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.

1.觀察計(jì)算:(1)如圖1,當(dāng)a=4,b=1時(shí),四邊形ABFD的面積為           ;

(2)如圖2,當(dāng)a=4,b=2時(shí),四邊形ABFD的面積為           ;

(3)如圖3,當(dāng)a=4,b=3時(shí),四邊形ABFD的面積為           ;

2.探索發(fā)現(xiàn):(4)根據(jù)上述計(jì)算的結(jié)果,你認(rèn)為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關(guān)系?證明你的結(jié)論;

3.綜合應(yīng)用:(5)農(nóng)民趙大伯有一塊正方形的土地(如圖),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側(cè)補(bǔ)給趙大伯一塊土地,補(bǔ)償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來(lái)正方形土地的面積相等,M、E、B三點(diǎn)要在一條直線上,請(qǐng)你畫圖說(shuō)明,如何確定M點(diǎn)的位置.(要求尺規(guī)作圖,保留作圖痕跡)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案