如圖,一艘輪船從點A向正北方向航行,每小時航行15海里,小島P在輪船的北偏西15°,3小時后輪船航行到點B,小島P此時在輪船的北偏西30°方向,在小島P的周圍20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.

解:作輔助線PD⊥AB于D;
∵∠PBD=30°,∠PAB=15°,∠PBD=∠PAB+∠BPA
∴∠BPA=15°即AB=PB=45(海里)
PD=PB•sin30°=45×0.5=22.5>20,
∴船不改變航向,不會觸礁.
分析:本題可作輔助線PD垂直AB,利用直角三角形性質(zhì)求出PD長,和20海里比較即可看出船不改變航向是否會觸礁.
點評:此題考查了直角三角形的性質(zhì),關(guān)鍵為找出題中的等腰三角形,然后再根據(jù)直角三角形性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,一艘輪船從點A向正北方向航行,每小時航行15海里,小島P在輪船的北偏西15°,3小時后輪船航行到點B,小島P此時在輪船的北偏西30°方向,在小島P的周圍20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一艘輪船早上8時從點A向正北方向出發(fā),小島P在輪船的北偏西15°方向,輪船每小時航行15海里,11時輪船到達(dá)點B處,小島P此時在輪船的北偏西30°方向.
(1)求此時輪船距小島為多少海里?
(2)在小島P的周圍20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:一艘輪船在上午8時從A處出發(fā),以20海里/時的速度由南向北航行,在A處測得小島P在北偏西24°,9點30分到達(dá)B處,這時測得小島P在北偏西48°,求B處到小島P的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一艘輪船從點A向正北方向航行,每小時航行15海里,小島P在輪船的北偏西15°,3小時后輪船航行到點B,小島P此時在輪船的北偏西30°方向,在小島P的周圍20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案