如圖,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC為直徑的半圓O交AB于點(diǎn)D,點(diǎn)E是AB的中點(diǎn),CE交半圓O于點(diǎn)F,則圖中陰影部分的面積為    cm2
【答案】分析:易證∠BCE=∠ACD,則根據(jù)弦切角定理可以得到與弦AD圍成的弓形的面積等于與弦CF圍成的弓形的面積相等,則陰影部分的面積等于半圓的面積減去直角△ACD的面積,再減去弓形的面積,據(jù)此即可求解.
解答:解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,
∴AC=AB=6cm,∠A=60°
∵E是AB的中點(diǎn),
∴CE=AB,
則△ACE是等邊三角形.
∴∠BCE=90°-60°=30°,
∵AC是直徑,
∴∠CDA=90°,
∴∠ACD=90°-∠A=30°,
∴∠BCE=∠ACD,
=
連接OD,作OG⊥CD于點(diǎn)G,
則∠COD=120°,OG=OC=,CG=CD=
∴陰影部分的面積為:S扇形COD-S△COD=-××=3π-
故答案是:3π-
點(diǎn)評:本題考查了等邊三角形的性質(zhì),以及圓的面積的計算,正確理解:與弦AD圍成的弓形的面積等于與弦CF圍成的弓形的面積相等是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案