如圖,兩個(gè)同心圓,大圓半徑為5 cm,小圓的半徑為3 cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是________.
分析:解決此題首先要弄清楚AB在什么時(shí)候最大,什么時(shí)候最小.當(dāng)AB與小圓相切時(shí)有一個(gè)公共點(diǎn),此時(shí)可知AB最小;當(dāng)AB經(jīng)過同心圓的圓心時(shí),弦AB最大且與小圓相交有兩個(gè)公共點(diǎn),此時(shí)AB最大,由此可以確定所以AB的取值范圍. 解答:解:如圖,當(dāng)AB與小圓相切時(shí)有一個(gè)公共點(diǎn)D, 連接OA,OD,可得OD⊥AB, ∴D為AB的中點(diǎn),即AD=BD, 在Rt△ADO中,OD=3,OA=5, ∴AD=4, ∴AB=2AD=8; 當(dāng)AB經(jīng)過同心圓的圓心時(shí),弦AB最大且與小圓相交有兩個(gè)公共點(diǎn), 此時(shí)AB=10, 所以AB的取值范圍是8<AB≤10. 故答案為:8<AB≤10 點(diǎn)評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:垂徑定理,勾股定理,以及切線的性質(zhì),其中解題的關(guān)鍵是抓住兩個(gè)關(guān)鍵點(diǎn):1、當(dāng)弦AB與小圓相切時(shí)最短;2、當(dāng)AB過圓心O時(shí)最長. |
考點(diǎn):直線與圓的位置關(guān)系;勾股定理;垂徑定理. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、16π | B、36π | C、52π | D、81π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com