【題目】已知正方形ABCD的邊長(zhǎng)為6,E、F、P分別是AB、CD、AD上的點(diǎn)(均不與正方形頂點(diǎn)重合)且PE=PF,PEPF.

1)求證:AE+DF=6

2)設(shè)AE=,五邊形EBCFP的面積為,求的函數(shù)關(guān)系式,并求出的取值范圍.

【答案】1)證明見(jiàn)解析;

2yx26x36,y的取值范圍是27≤y36

【解析】

1)根據(jù)∠A=∠D=∠EPF90°PEPF的條件,易證AEPDPF全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得證;

2)可以用x表示PD進(jìn)而表示AP,五邊形面積y等于正方形面積減去兩個(gè)全等三角形的面積,寫得y的函數(shù)解析式.把函數(shù)解析式寫出頂點(diǎn)式,結(jié)合x的取值范圍求出y的取值范圍.,

1)∵四邊形ABCD是正方形,

ABBCCDDA6,∠A=∠D90°,

∴∠AEP+∠APE90°,

PEPF,

∴∠EPF90°

∴∠APE+∠DPF90°,

∴∠AEP=∠DPF

AEPDPF中,

∴△AEP≌△DPFAAS),

AE=DP AP=DF

DP+AP=AD=6;

2)∵△AEP≌△DPF,

SAEPSDPF,DPAEx

APADDP6x,

yS正方形ABCDSAEPSDPFS正方形ABCD2SAEPAB22AEAP36x6x)=x26x36=(x3227,

0x6,

x3時(shí),y最小值為27;x06時(shí),y=(0322736,

27≤y36

yx26x36,y的取值范圍是27≤y36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)準(zhǔn)備報(bào)名參加運(yùn)動(dòng)會(huì),有以下4個(gè)項(xiàng)目可供選擇. 徑賽項(xiàng)目:100m,200m (分別用A 、B表示);田賽項(xiàng)目:跳遠(yuǎn) ,跳高(分別用CD表示).

(1)該同學(xué)從4個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為 ;

(2)該同學(xué)從4個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果(請(qǐng)用A、BC、D表示相對(duì)應(yīng)的項(xiàng)目),并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】期間,小明到小陳家所在的美麗鄉(xiāng)村游玩,在村頭A處小明接到小陳發(fā)來(lái)的定位,發(fā)現(xiàn)小陳家C在自己的北偏東45°方向,于是沿河邊筆直的綠道l步行200米到達(dá)B處,這時(shí)定位顯示小陳家C在自己的北偏東30°方向,如圖所示,根據(jù)以上信息和下面的對(duì)話,請(qǐng)你幫小明算一算他還需沿綠道繼續(xù)直走多少米才能到達(dá)橋頭D處(精確到1米)(備用數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A11,0),A21,1),A3-1,1),A4-1,-1),A52-1),,則A2017的坐標(biāo)為(

A.505504B.505,-504C.-504,504D.-504,-504

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BCGE,AFDE,1=50°

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點(diǎn)Q,且Q=15°,求ACB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,,于點(diǎn)D,BE平分,且于點(diǎn)ECD相交于點(diǎn)F,于點(diǎn)H,交BE于點(diǎn)G,下列結(jié)論:①;②;③;其中正確的是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC△AEG面積之間的關(guān)系,并說(shuō)明理由。

2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)了一批、兩種型號(hào)的智能掃地機(jī)器人,這兩種智能掃地機(jī)器人的進(jìn)購(gòu)數(shù)量、進(jìn)價(jià)、售價(jià)如表所示:

類型

進(jìn)購(gòu)數(shù)量(個(gè))

進(jìn)價(jià)(元/個(gè))

售價(jià)(元/個(gè))

20

1800

2300

40

1500

若該商場(chǎng)計(jì)劃全部銷售完這批智能掃地機(jī)器人的總利潤(rùn)不少于32000元,則型智能掃地機(jī)器人的銷售單價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,AD是△ABC的中線.△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?

(2)若三角形的面積記為S,例如:△ABC的面積記為SABC.如圖②,已知SABC1.△ABC的中線ADCE相交于點(diǎn)O,求四邊形BDOE的面積.

小華利用(1)的結(jié)論,解決了上述問(wèn)題,解法如下:

連接BO,設(shè)SBEOxSBDOy,由(1)結(jié)論可得:SBCESBADSABC,SBCO2SBDO2ySBAO2SBEO2x.則有所以xy.即四邊形BDOE面積為

請(qǐng)仿照上面的方法,解決下列問(wèn)題:

①如圖③,已知SABC1D、EBC邊上的三等分點(diǎn),FGAB邊上的三等分點(diǎn),AD、CF交于點(diǎn)O,求四邊形BDOF的面積.

②如圖④,已知SABC1D、EFBC邊上的四等分點(diǎn),G、HIAB邊上的四等分點(diǎn),AD、CG交于點(diǎn)O,則四邊形BDOG的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案