(2010•威海)如圖,在?ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半徑等于3cm,AB,AD分別與⊙O相切于點E,F(xiàn).⊙O在?ABCD內(nèi)沿AB方向滾動,與BC邊相切時運動停止.試求⊙O滾過的路程?

【答案】分析:⊙O滾過的路程即線段EN的長度.EN=AB-AE-BN,所以只需求AE、BN的長度即可.分別解所在的直角三角形.
解答:解:連接OE,OA、BO.                                   (1分)
∵AB,AD分別與⊙O相切于點E,F(xiàn),
∴OE⊥AB,OE=3cm.                                 (2分)
∵∠DAB=60°,
∴∠OAE=30°.                                     (3分)
在Rt△AOE中,
AE=cm.                      (5分)
∵AD∥BC,∠DAB=60°,
∴∠ABC=120°.                                       (6分)
設(shè)當(dāng)運動停止時,⊙O與BC,AB分別相切于點M,N,連接ON,OM.(7分)
同理可得,∠BON為30°,且ON為3cm,
∴BN=ON•tan30°=3×=cm,
EN=AB-AE-BN=15-3-=15-4cm.                                   (9分)
∴⊙O滾過的路程為(15-4)cm.                         (10分)
點評:此題考查了切線的性質(zhì)、平行四邊形的性質(zhì)及解直角三角形等知識點,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年山東省濰坊市安丘市吾山中學(xué)初三數(shù)學(xué)第一次月考試卷(解析版) 題型:解答題

(2010•威海)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年山西省陽泉市盂縣九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•威海)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•威海)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•威海)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•威海)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達(dá)式;
(2)連接OA,OC,求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案