【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動,同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
【答案】(1) a= -2,b=1,c=7;(2) 4;(3) AB=3t + 3,AC=5t + 9,BC=2t + 6;(4) 不變,始終為12.
【解析】試題分析:(1)利用|a+2|+(c-7)2=0,得a+2=0,c-7=0,解得a,c的值,由b是最小的正整數(shù),可得b=1;
(2)先求出對稱點(diǎn),即可得出結(jié)果;
(3)由 3BC-2AB=3(2t+6)-2(3t+3)求解即可.
試題解析:(1)∵|a+2|+(c-7)2=0,
∴a+2=0,c-7=0,
解得a=-2,c=7,
∵b是最小的正整數(shù),
∴b=1;
(2)(7+2)÷2=4.5,
對稱點(diǎn)為7-4.5=2.5,2.5+(2.5-1)=4;
(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
(4)不變.
3BC-2AB=3(2t+6)-2(3t+3)=12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ADC中,點(diǎn)B是邊DC上的一點(diǎn),∠DAB=∠C, .若△ADC的面積為18cm,求△ABC的面積.
【答案】10
【解析】試題分析:根據(jù)相似三角形的判定定理得到△ADC∽△BAD,根據(jù)相似三角形的面積比等于相似比的平方即可得到結(jié)論.
試題解析:∵∠DAB=∠C,∠D=∠D, ∴△ADC∽△BAD,
∴,
∵△ADC的面積為18cm2 ,
∴△BDA的面積為8cm2 ,
∴△ABC的面積=△ADC的面積﹣△BDA的面積=10cm2
【題型】解答題
【結(jié)束】
24
【題目】如圖,在網(wǎng)格圖中的△ABC與△DEF是否成位似圖形?說明理由.如果是,同時(shí)指出它們的位似中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點(diǎn),則3x1y2-5x2y1的值為 __________.
【答案】-6
【解析】試題分析:∵點(diǎn)A(x1,y1),B(x2,y2)是雙曲線y=上的點(diǎn),
∴x1y1=x2y2=-3①,
∵直線y=kx(k<0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),
∴x1=-x2,y1=-y2②,
∴原式=-3x1y1+5x2y2=9-15=-6.
故答案為:-6.
點(diǎn)睛:本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)的對稱性,根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱得出x1=-x2,y1=-y2是解答此題的關(guān)鍵.
【題型】填空題
【結(jié)束】
15
【題目】A,B兩地相距180km,新修的高速公路開通后,在A,B兩地間行駛的長途客車平均車速提高了 50%,而從A地到B地的時(shí)間縮短了 1h .若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為 _____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BEF都是等邊三角形,點(diǎn)D在BC邊上,點(diǎn)F在AB邊上,且∠EAD=60°,連接ED、CF.
(1)求證:△ABE≌△ACD;
(2)求證:四邊形EFCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是正方形ABCD的邊AD上兩個(gè)動點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長為1,則線段DH長度的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個(gè)含45°角的直角三角板BEF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,聯(lián)結(jié)DF,點(diǎn)M,N分別為DF,EF的中點(diǎn),聯(lián)結(jié)MA,MN.
(1)如圖1,點(diǎn)E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫出結(jié)論;
(2)如圖2,點(diǎn)E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個(gè)結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價(jià)格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 180 |
(1)求a,b的值;
(2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,
b滿足 |a+2|+=0,點(diǎn)C的坐標(biāo)為(0,3).
(1)求a,b的值及S三角形ABC;
(2)若點(diǎn)M在x軸上,且S三角形ACM=S三角形ABC,試求點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com