如圖④, ⊙P過O、、,半徑PBPA,雙曲線     

恰好經(jīng)過B點,則k的值是(    ).

A.-1    B.-2    C.-3    D.-4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,等邊△ABC為2
3
,一邊在x上且A(1-
3
,0),AC交y軸于點,過點E作EF∥AB交BC于點F.
(1)直接寫出點B、C的坐標(biāo);
(2)若直線y=kx-1(k≠0)將四邊形EABF的面積等分,求k的值;
(3)如圖2,過點A、B、C線與y軸交于點D,M為線段OB上的一個動點,過x軸上一點G(-2,0)作DM的垂線,垂足為H,直線GH交y軸于點N,當(dāng)M在線段OB上運動時,現(xiàn)給出兩個結(jié)論:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一個是正確的,請你判斷哪個結(jié)論正確,并證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:
x-3
x-2
+1=
3
2-x

(2)如圖,分別過點C、B作△ABC的BC邊上的中線AD及其延長線的垂線,垂足分別為E、F.求證:BF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O過點B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=2,BC=6,則⊙O的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線AB∥CD,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點P是平面內(nèi)的一個動點,連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
①當(dāng)點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當(dāng)點P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若過點P1,P2作直線m的平行線,則∠1、∠2、∠3、∠4間的數(shù)量關(guān)系是
∠2+∠4=∠1+∠3
∠2+∠4=∠1+∠3

查看答案和解析>>

同步練習(xí)冊答案