當(dāng)a
>2
>2
時(shí),正比例函數(shù)y=(2-a)x的圖象經(jīng)過二、四象限.
分析:根據(jù)正比例函數(shù)的性質(zhì)可得2-a<0,再解不等式即可.
解答:解:∵正比例函數(shù)y=(2-a)x的圖象經(jīng)過二、四象限,
∴2-a<0,
解得a>2.
故答案為:>2.
點(diǎn)評(píng):此題主要考查了正比例函數(shù)的性質(zhì),正比例函數(shù)圖象的性質(zhì):它是經(jīng)過原點(diǎn)的一條直線.當(dāng)k>0時(shí),圖象經(jīng)過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),圖象經(jīng)過二、四象限,y隨x的增大而減。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河北)某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n 2 1
速度x 40 60
指數(shù)Q 420 100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請(qǐng)說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n21
速度x4060
指數(shù)Q420100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請(qǐng)說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-數(shù)學(xué)公式,數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(帶解析) 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).

次數(shù)n
2
1
速度x
40
60
指數(shù)Q
420
100
(1)用含x和n的式子表示Q;
(2)當(dāng)x = 70,Q = 450時(shí),求n的值;
(3)若n = 3,要使Q最大,確定x的值;
(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請(qǐng)說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q=W+100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n21
速度x4060
指數(shù)Q420100
(1)用含x和n的式子表示Q;
(2)當(dāng)x=70,Q=450時(shí),求n的值;
(3)若n=3,要使Q最大,確定x的值;
(4)設(shè)n=2,x=40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420?若能,求出m的值;若不能,請(qǐng)說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(河北卷)數(shù)學(xué)(解析版) 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).

次數(shù)n

2

1

速度x

40

60

指數(shù)Q

420

100

(1)用含x和n的式子表示Q;

(2)當(dāng)x = 70,Q = 450時(shí),求n的值;

(3)若n = 3,要使Q最大,確定x的值;

(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時(shí)x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請(qǐng)說明理由.

參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案