如圖,點(diǎn)B、D在線段AE上,BC∥EF,AD=BE,BC=EF.
求證:
(1)∠C=∠F;
(2)AC∥DF.
分析:(1)根據(jù)等式的性質(zhì)得出AB=DE,再有BC∥EF就用∠DBC=∠BEF,證明△ABC≌△DEF就可以得出結(jié)論;
(2)由△ABC≌△DEF可以得出∠CAB=∠FDE,就可以得出結(jié)論.
解答:證明:(1)∵BC∥EF(已知)
∴∠ABC=∠DEF
∵AD=BE
∴AD+DB=DB+BE
即AB=DE
在△ABC與△DEF中
AB=DE
∠ABC=∠E
BC=EF

∴△ABC≌△DEF
∴∠C=∠F;
(2)∵△ABC≌△DEF,
∴∠A=∠FDE,
∴AC∥DF.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)的運(yùn)用,平行線的性質(zhì)與判定的運(yùn)用,解答本題時(shí)證明三角形全等是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,點(diǎn)C、D在線段AB上,△PCD是等邊三角形.
(1)當(dāng)AC、CD、DB滿足怎樣的關(guān)系時(shí),△ACP∽△PDB;
(2)當(dāng)△ACP∽△PDB時(shí),求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,點(diǎn)D,E分別在線段AB,AC上,BE,CD相交于點(diǎn)O,AE=AD,要使△ABE≌△ACD,需添加一個(gè)條件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要寫一個(gè)條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•郴州)如圖,點(diǎn)D、E分別在線段AB,AC上,AE=AD,不添加新的線段和字母,要使△ABE≌△ACD,需添加的一個(gè)條件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只寫一個(gè)條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C,D在線段AB上,AC=
1
3
AB,CD=
1
2
CB,若AB=3,則圖中所有線段長的和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C、D在線段AB上,AC=
13
BC
,D是BC的中點(diǎn),CD=4.5,求線段AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案