一次函數(shù)y=kx+b的圖象與x軸和y軸的正半軸分別交于A,B兩點(diǎn).已知OA+OB=6(O為坐標(biāo)原點(diǎn)).且S△ABO=4,則這個(gè)一次函數(shù)的解析式為( 。
分析:首先根據(jù)題意設(shè)A(x,0),B(0,y),再根據(jù)“OA+OB=6(O為坐標(biāo)原點(diǎn)).且S△ABO=4,”可得方程組
1
2
xy=4
x+y=6
,再解出x、y的值,進(jìn)而得到A、B兩點(diǎn)坐標(biāo).然后再利用待定系數(shù)法求出一次函數(shù)解析式.
解答:解:∵一次函數(shù)y=kx+b的圖象與x軸和y軸的正半軸分別交于A,B兩點(diǎn).
∴設(shè)A(x,0),B(0,y),
∵OA+OB=6(O為坐標(biāo)原點(diǎn)).且S△ABO=4,
1
2
xy=4
x+y=6
,
解得:
x=2
y=4
x=4
y=2
,
∴A(2,0)、B(0,4)或A(4,0)、B(0,2),
當(dāng)A(2,0)、B(0,4)時(shí)
0=2k+b
b=4
,解得
b=4
k=-2
,
當(dāng)A(4,0)、B(0,2)時(shí),
0=4k+b
b=2
,解得
k=-
1
2
b=2

∴這個(gè)一次函數(shù)的解析式為y=-
1
2
x+2或y=-2x+4,
故選:D.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求一次函數(shù)解析式,關(guān)鍵是根據(jù)題意計(jì)算出一次函數(shù)圖象所經(jīng)過的點(diǎn)的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知函數(shù)y=x+1的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B(0,-1),并且與精英家教網(wǎng)x軸以及y=x+1的圖象分別交于點(diǎn)C、D.
(1)若點(diǎn)D的橫坐標(biāo)為1,求四邊形AOCD的面積(即圖中陰影部分的面積);
(2)在第(1)小題的條件下,在y軸上是否存在這樣的點(diǎn)P,使得以點(diǎn)P、B、D為頂點(diǎn)的三角形是等腰三角形.如果存在,求出點(diǎn)P坐標(biāo);如果不存在,說明理由.
(3)若一次函數(shù)y=kx+b的圖象與函數(shù)y=x+1的圖象的交點(diǎn)D始終在第一象限,則系數(shù)k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知a,b,c為正實(shí)數(shù),且滿足a=b=c=k,則一次函數(shù)y=kx+(1+k)的圖象一定經(jīng)過( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一次函數(shù)y=kx+b與反比例函數(shù)y=
2
x
的圖象如圖所示,則關(guān)于x的方程kx+b=
2
x
的解為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•白云區(qū)一模)若一次函數(shù)y=kx+b,當(dāng)x的值增大1時(shí),y值減小3,則當(dāng)x的值減小3時(shí),y值( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濰坊)如圖,拋物線y=ax2+bx+c關(guān)于直線x=1對(duì)稱,與坐標(biāo)軸交與A,B,C三點(diǎn),且AB=4,點(diǎn)D(2,
32
)在拋物線上,直線l是一次函數(shù)y=kx-2(k≠0)的圖象,點(diǎn)O是坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)若直線l平分四邊形OBDC的面積,求k的值;
(3)把拋物線向左平移1個(gè)單位,再向下平移2個(gè)單位,所得拋物線與直線l交于M,N兩點(diǎn),問在y軸正半軸上是否存在一定點(diǎn)P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對(duì)稱?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案