如圖,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分線.
(1)用尺規(guī)作圖方法,作∠ADC的平分線DN;(保留作圖痕跡,不寫作法和證明)
(2)設(shè)DN與AM交于點(diǎn)F,判斷△ADF的形狀.(只寫結(jié)果)

解:(1)如圖所示:


(2)△ADF的形狀是等腰直角三角形,
理由是:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,
∵AF平分∠EAC,
∴∠EAF=∠FAC,
∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,
即△ADF是直角三角形,
∵AB=AC,
∴∠B=∠ACB,
∵∠EAC=2∠EAF=∠B+∠ACB,
∴∠EAF=∠B,
∴AF∥BC,
∴∠AFD=∠FDC,
∵DF平分∠ADC,
∴∠ADF=∠FDC=∠AFD,
∴AD=AF,
即直角三角形ADF是等腰直角三角形.
分析:(1)以D為圓心,以任意長為半徑畫弧,交AD于G,交DC于H,分別以G、H為圓心,以大于GH為半徑畫弧,兩弧交于N,作射線DN,交AM于F.
(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.
點(diǎn)評:本題考查了作圖-基本作圖,等腰三角形的性質(zhì)和判定的應(yīng)用,主要培養(yǎng)學(xué)生的動手操作能力和推理能力,題目比較典型,難度也適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案