25、已知:等邊三角形ABC
(1)如圖1,P為等邊△ABC外一點(diǎn),且∠BPC=120°.試猜想線段BP、PC、AP之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,P為等邊△ABC內(nèi)一點(diǎn),且∠APD=120°.求證:PA+PD+PC>BD.
分析:(1)AP=BP+PC,理由是延長(zhǎng)BP至E,使PE=PC,連接CE,由∠BPC=120°,推出等邊△CPE,得到CP=PE=CE,∠PCE=60°,根據(jù)已知等邊△ABC,推出AC=BC,∠ACP=∠BCE,根據(jù)三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出結(jié)論;
(2)在AD外側(cè)作等邊△AB′D,由(1)得PB′=AP+PD,根據(jù)三角形的三邊關(guān)系定理得到PA+PD+PC>CB′,再證△AB′C≌△ADB,根據(jù)全等三角形的性質(zhì)推出CB′=BD即可.
解答:猜想:AP=BP+PC,
(1)證明:延長(zhǎng)BP至E,使PE=PC,連接CE,
∵∠BPC=120°,
∴∠CPE=60°,又PE=PC,
∴△CPE為等邊三角形,
∴CP=PE=CE,∠PCE=60°,
∵△ABC為等邊三角形,
∴AC=BC,∠BCA=60°,
∴∠ACB=∠PCE,
∴∠ACB+∠BCP=∠PCE+∠BCP,
即:∠ACP=∠BCE,
∴△ACP≌△BCE,
∴AP=BE,
∵BE=BP+PE,
∴AP=BP+PC.

(2)證明:
在AD外側(cè)作等邊△AB′D,
則點(diǎn)P在三角形ADB′外,
∵∠APD=120°∴由(1)得PB′=AP+PD,
在△PB′C中,有PB′+PC>CB′,
∴PA+PD+PC>CB′,
∵△AB′D、△ABC是等邊三角形,
∴AC=AB,AB′=AD,
∠BAC=∠DAB′=60°,
∴∠BAC+∠CAD=∠DAB′+∠CAD,
即:∠BAD=∠CAB′,
∴△AB′C≌△ADB,
∴CB′=BD,
∴PA+PD+PC>BD.
法二:∵AP+PC>AC,
∵AC=BC,
∴AD+DC>BC,
∵PD>CD,
∴PD+BC>BD,
∴PD+PA+PC>BD.
點(diǎn)評(píng):本題主要考查對(duì)等邊三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系,等式的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,此題是一個(gè)拔高的題目,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:等邊三角形ABC的邊長(zhǎng)為4厘米,長(zhǎng)為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)開始時(shí),點(diǎn)M與點(diǎn)A重合,點(diǎn)N到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)終止),過(guò)點(diǎn)M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點(diǎn),精英家教網(wǎng)線段MN運(yùn)動(dòng)的時(shí)間為t秒.
(1)線段MN在運(yùn)動(dòng)的過(guò)程中,t為何值時(shí),四邊形MNQP恰為矩形并求出該矩形的面積;
(2)線段MN在運(yùn)動(dòng)的過(guò)程中,四邊形MNQP的面積為S,運(yùn)動(dòng)的時(shí)間為t,求四邊形MNQP的面積S隨運(yùn)動(dòng)時(shí)間t變化的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:等邊三角形ABC,點(diǎn)D是AB的中點(diǎn),過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FE⊥BC,垂足為E,若三角形ABC的邊長(zhǎng)為4.
求:(1)線段AF的長(zhǎng)度;(2)線段BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,已知在等邊三角形ABC中,D、E是AB、AC上的點(diǎn),且AD=CE.
求證:CD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在等邊三角形ABC中,D、E分別為AB、AC上的點(diǎn),且BD=AE,EB與CD相交于點(diǎn)O,EF⊥CD于點(diǎn)F.求證:OE=2OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,等邊三角形ABC,D是AB上一點(diǎn),DE⊥BC,垂足為E,EF⊥AC,垂足為F,F(xiàn)D⊥AB.
(1)說(shuō)明△DEF 為等邊三角形的理由;(2)若AD=2,試求△ABC和△DEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案