(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-4),與x軸交于A、B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線的對稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(Q與A、B兩點(diǎn)不重合),過點(diǎn)Q作QF⊥AE于F,QG⊥DB于G,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點(diǎn)H是線段EQ上一點(diǎn),過點(diǎn)H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

【答案】分析:(1)可將拋物線的解析式設(shè)為頂點(diǎn)式,然后將A點(diǎn)坐標(biāo)代入,即可求得拋物線的解析式;
(2)根據(jù)兩對相似三角形:△AQF、△ABE和△BGQ、△BDA得出的對應(yīng)成比例線段,即可求出所求的代數(shù)式是否為定值;
(3)易證得△EMN∽△FQE,得①,下面證,需通過構(gòu)建相似三角形求解;
過Q作QP⊥BE于P,則四邊形FQPE是矩形,F(xiàn)E=QP②;已知E在AB的垂直平分線上,可得:△AEB是等腰Rt△,進(jìn)一步可知△AFQ、△QEB也是等腰Rt△;易證得△FAQ∽△PQB,得③,聯(lián)立①②③即可證得所求的結(jié)論.
解答:解:(1)設(shè)拋物線的解析式為y=a(x-1)2-4,(1分)
將A(-1,0)代入解析式得:0=a(-1-1)2-4,
∴a=1,
∵拋物線的解析式為y=(x-1)2-4,
即y=x2-2x-3;(3分)

(2)是定值,+=1,(4分)
∵AB是直徑,
∴∠AEB=90°,
∵QF⊥AE,
∴QF∥BE,
∴△AQF∽△ABE,
=
同理:=,
+=+===1;(6分)

(3)∵直線EC為拋物線的對稱軸,
∴EC垂直平分AB,
∴AE=EB,
∵∠AEB=90°,
∴△AEB為等腰直角三角形,
∴∠EAB=∠EBA=45°,(7分)
過點(diǎn)Q作QP⊥BE于P,如圖(8分)
由已知及作法可知,四邊形FQPE是矩形,
∴QP=FE且QP∥FE,
在△AQF和△QBP中,
∵∠EAB=∠BQP=45°,
∴QP=BP=FE且△AQF∽△QBP,
=
==①,
在△QFE和△MEN中,
∵M(jìn)N⊥EQ,
∴∠MNE+∠HEN=90°,
∵∠FEQ+∠HEN=90°,
∴∠MNE=∠FEQ,
又∵∠QFE=∠MEN=90°,
∴△EFQ∽△NEM,
=②,
由①、②知:=.(11分)
點(diǎn)評(píng):此題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì)、等腰直角三角形的判定和性質(zhì)等知識(shí);(3)題中,能夠正確的根據(jù)已知和所求條件構(gòu)建出相似三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(01)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(02)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省涼山州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•涼山州)已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-4),與x軸交于A、B兩點(diǎn),A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線的對稱軸交于點(diǎn)E,依次連接A、D、B、E,點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(Q與A、B兩點(diǎn)不重合),過點(diǎn)Q作QF⊥AE于F,QG⊥DB于G,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點(diǎn)H是線段EQ上一點(diǎn),過點(diǎn)H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年北京市海淀區(qū)中考數(shù)學(xué)試卷(2)(解析版) 題型:選擇題

(2010•涼山州)如圖(1)是飲水機(jī)的圖片,飲水桶中的水由圖(2)的位置下降到圖(3)的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案