分析:E作EM∥AB,過F作FH∥AB,過G作GN∥AB,推出AB∥EM∥GN∥CD∥FH,得出∠B=∠BEM,∠FEM=∠HFE,∠HFG=∠FGN,∠D=∠NGN,求出∠B+∠EFH+∠HFG+∠D=∠BEM+∠MEF+∠FGN+∠NGD即可.
解答:解:過E作EM∥AB,過F作FH∥AB,過G作GN∥AB,
∵AB∥CD,
∴AB∥EM∥GN∥CD∥FH,
∴∠B=∠BEM,∠FEM=∠HFE,∠HFG=∠FGN,∠D=∠NGN,
∴∠B+∠EFH+∠HFG+∠D=∠BEM+∠MEF+∠FGN+∠NGD,
∴∠B+∠EFG+∠D=∠EFG+∠FGD,
故選A.
點評:本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.