【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱
(1)填空:點(diǎn)B的坐標(biāo)是 ;
(2)過(guò)點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過(guò)點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說(shuō)明理由;
(3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對(duì)稱點(diǎn)C′恰好落在該拋物線的對(duì)稱軸上,求此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)(0,);(2)點(diǎn)P在拋物線上,理由詳見解析;(3)P點(diǎn)坐標(biāo)為(,1).
【解析】試題分析:(1)由拋物線解析式可求得點(diǎn)A的坐標(biāo),再利用對(duì)稱可求得B點(diǎn)坐標(biāo);(2)可先用k表示出C點(diǎn)坐標(biāo),過(guò)B作BD⊥l于點(diǎn)D,條件可知P點(diǎn)在x軸上方,設(shè)P點(diǎn)縱坐標(biāo)為y,可表示出PD、PB的長(zhǎng),在Rt△PBD中,利用勾股定理可求得y,則可求出PB的長(zhǎng),此時(shí)可得出P點(diǎn)坐標(biāo),代入拋物線解析式可判斷P點(diǎn)在拋物線上;(3)利用平行線和軸對(duì)稱的性質(zhì)可得到∠OBC=∠CBP=∠C′BP=60°,則可求得OC的長(zhǎng),代入拋物線解析式可求得P點(diǎn)坐標(biāo).
試題解析:(1)∵拋物線y=x2+與y軸相交于點(diǎn)A,
∴A(0,),
∵點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱,
∴BA=OA=,
∴OB=,即B點(diǎn)坐標(biāo)為(0,),
故答案為:(0,);
(2)∵B點(diǎn)坐標(biāo)為(0,),
∴直線解析式為y=kx+,令y=0可得kx+=0,解得x=﹣,
∴OC=﹣,
∵PB=PC,
∴點(diǎn)P只能在x軸上方,
如圖1,過(guò)B作BD⊥l于點(diǎn)D,設(shè)PB=PC=m,
則BD=OC=﹣,CD=OB=,
∴PD=PC﹣CD=m﹣,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,
即m2=(m﹣)2+(﹣)2,解得m=+,
∴PB=+,
∴P點(diǎn)坐標(biāo)為(﹣,+),
當(dāng)x=﹣時(shí),代入拋物線解析式可得y=+,
∴點(diǎn)P在拋物線上;
(3)如圖2,連接CC′,
∵l∥y軸,
∴∠OBC=∠PCB,
又PB=PC,
∴∠PCB=∠PBC,
∴∠PBC=∠OBC,
又C、C′關(guān)于BP對(duì)稱,且C′在拋物線的對(duì)稱軸上,即在y軸上,
∴∠PBC=∠PBC′,
∴∠OBC=∠CBP=∠C′BP=60°,
在Rt△OBC中,OB=,則BC=1
∴OC=,即P點(diǎn)的橫坐標(biāo)為,代入拋物線解析式可得y=()2+=1,
∴P點(diǎn)坐標(biāo)為(,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )
A. 25π B. 65π C. 90π D. 130π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)連續(xù)的正奇數(shù),最大數(shù)與最小數(shù)的積比中間一個(gè)數(shù)的6倍多3,求這三個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線m外有一定點(diǎn)A,A到直線m的距離是7 cm,B是直線m上的任意一點(diǎn),則線段AB的長(zhǎng)度:AB___________7 cm.(填寫“<”“>”“=”“≤”或“≥”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)m= ,n= ,p= ;
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com