已知:如圖,AB為⊙O的弦,過(guò)點(diǎn)O作AB的平行線(xiàn),交⊙O于點(diǎn)C,直線(xiàn)OC上一點(diǎn)D滿(mǎn)足∠D=∠ACB.
(1)判斷直線(xiàn)BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑等于4,tan∠ACB=,求CD的長(zhǎng).

【答案】分析:(1)應(yīng)該是相切,連接OB證OB⊥BD即可.本題的基本思路是通過(guò)平行線(xiàn),弦切角定理,等邊對(duì)等角,來(lái)得出相等的角,然后將這些相等的角進(jìn)行置換,最終轉(zhuǎn)換到一個(gè)三角形中,根據(jù)三角形的內(nèi)角和來(lái)求出度數(shù).從而得出∠OBD=90°的結(jié)論.
(2)有了∠ACB的正切值也就有了∠D的正切值,那么可在直角三角形OBD中,有半徑的長(zhǎng),有∠D的正切值,可用正弦函數(shù)求出OD的長(zhǎng),也就求出了CD的長(zhǎng).
解答:解:(1)直線(xiàn)BD與⊙O相切.
證明:如圖,連接OB.
∵∠OCB=∠CBD+∠D,∠1=∠D,
∴∠2=∠CBD,
∵AB∥OC,
∴∠2=∠A,
∴∠A=∠CBD.
∵OB=OC,
∴∠BOC+2∠3=180°.
∵∠BOC=2∠A,
∴∠A+∠3=90°.
∴∠CBD+∠3=90°.
∴∠OBD=90°.
∴直線(xiàn)BD與⊙O相切.

(2)∵∠D=∠ACB,tan∠ACB=,
∴tanD=
∵∠OBD=90°,OB=4,tanD=,
∴sinD=,OD==5.
∴CD=OD-OC=1.
點(diǎn)評(píng):本題考查的是切線(xiàn)的判定以及解直角三角形,要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東陽(yáng)市模擬)已知:如圖,AB為⊙O的直徑,AC、BC為弦,點(diǎn)P為⊙O上一點(diǎn),弧AC=弧AP,AB=10,tanA=
3

(1)求PC的長(zhǎng);
(2)過(guò)P作⊙O切線(xiàn)交BA延長(zhǎng)線(xiàn)于E,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線(xiàn),A、C為切點(diǎn),∠BAC=30°.
(1)求∠P的大;
(2)若AB=6,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB為⊙O直徑,AC為弦,M為弧AC上一點(diǎn),若∠CAB=40度,則∠AMC的度數(shù)為
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB為半圓O的直徑,C、D是半圓上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE交于點(diǎn)F.①
AD
=
DC
;②DE⊥AB;③AF=DF.請(qǐng)你寫(xiě)出以①、②、③中的任意兩個(gè)條件,推出第三個(gè)(結(jié)論)的一個(gè)正確命題.并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,AO為⊙O'的直徑,⊙O的弦AC交⊙O'于D點(diǎn),OC和BD相交于E點(diǎn),AB=4,∠CAB=30°.求CE、DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案