已知⊙O的半徑為10cm,弦AB∥弦CD,AB=16cm,CD=12cm,則弦AB和CD之間的距離為    cm.
【答案】分析:分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.
解答:解:①當弦AB和CD在圓心同側時,如圖,

∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF-OE=2cm;
②當弦AB和CD在圓心異側時,如圖,

∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF+OE=14cm;
故答案為:14cm或2cm.
點評:本題考查了勾股定理和垂徑定理,解此類題目要注意將圓的問題轉化成三角形的問題再進行計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知⊙O的半徑為10,弦AB=12,M是AB上任意一點,則線段OM的長可能是( 。
A、5B、7C、9D、11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,AB為⊙O的弦,過點O作OD⊥AB于點E,交⊙O于點D,過點D作CD∥AB,連接OB并延長交CD于點C,已知⊙O的半徑為10,OE=6.
求:(1)弦AB的長;(2)CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,CD切⊙O于點D,連接OC,交⊙O于點B,過點B作弦AB⊥OD,點E為垂足,已知⊙O的半徑為精英家教網10,sin∠COD=
45
.求:
(1)弦AB的長; 
(2)CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知⊙O的半徑為10,P為⊙O內一點,且OP=6,則過P點,且長度為整數(shù)的弦有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為
10
,AB=6,△ABC內接于⊙O,BD⊥AC于D,則sin∠CBD的值等于(  )

查看答案和解析>>

同步練習冊答案