(2007•資陽(yáng))如圖1,已知P為正方形ABCD的對(duì)角線AC上一點(diǎn)(不與A、C重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F.
(1)求證:BP=DP;
(2)如圖2,若四邊形PECF繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請(qǐng)給予證明;若不是,請(qǐng)用反例加以說明;
(3)試選取正方形ABCD的兩個(gè)頂點(diǎn),分別與四邊形PECF的兩個(gè)頂點(diǎn)連接,使得到的兩條線段在四邊形PECF繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)的過程中長(zhǎng)度始終相等,并證明你的結(jié)論.

【答案】分析:(1)由正方形的性質(zhì)可證△ABP≌△ADP,即BP=DP;
(2)當(dāng)四邊形PECF的點(diǎn)P旋轉(zhuǎn)到BC邊上時(shí),DP>DC>BP,此時(shí)BP=DP不成立;
(3)由旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)可證△BEC≌△DFC,即BE=DF.
解答:(1)證明:
證法一:在△ABP與△ADP中,
∵AB=AD∠BAC=∠DAC,AP=AP,
∴△ABP≌△ADP,
∴BP=DP.(2分)
證法二:利用正方形的軸對(duì)稱性,可得BP=DP.(2分)

(2)解:不是總成立.(3分)
當(dāng)四邊形PECF的點(diǎn)P旋轉(zhuǎn)到BC邊上時(shí),DP>DC>BP,此時(shí)BP=DP不成立,(5分)
說明:未用舉反例的方法說理的不得分.

(3)解:連接BE、DF,則BE與DF始終相等,
,
在圖1中,由正方形ABCD可證:
AC平分∠BCD,
∵PE⊥BC,PF⊥CD,
∴PE=PF,∠BCD=90°,
∴四邊形PECF為正方形.(7分)
∴CE=CF,
∵∠DCF=∠BCE,
BC=CD,
∴△BEC≌△DFC,
∴BE=DF.(8分)
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì)和全等三角形的判定,以及正方形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省珠海市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在線段BC、AC上,拋物線P上部分點(diǎn)的橫坐標(biāo)對(duì)應(yīng)的縱坐標(biāo)如下:
x-3-212
y-4
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=k•DF,若點(diǎn)M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省襄樊市?悼h城關(guān)鎮(zhèn)中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在線段BC、AC上,拋物線P上部分點(diǎn)的橫坐標(biāo)對(duì)應(yīng)的縱坐標(biāo)如下:
x-3-212
y-4
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=k•DF,若點(diǎn)M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省石家莊市第42中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•資陽(yáng))如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn):
(1)求點(diǎn)B的坐標(biāo)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案