【題目】已知拋物線 y=a(x﹣2)+1 經(jīng)過點 P(1,﹣3)

(1) a 的值;

(2)若點 A(m,y)、B(n ,y)(m<n<2)都在該拋物線上,試比較 yy的大。

【答案】(1)a=﹣4.(2)y1<y2.

【解析】

(1)將點(1,﹣3)代入y=a(x﹣2)2+1,運用待定系數(shù)法即可求出a的值。;
(2)先求得拋物線的對稱軸為x=2,再判斷A(m,y1)、B(n,y2)(m<n<3)在對稱軸左側(cè),從而判斷出y1y2的大小關(guān)系。

解:(1)∵拋物線過點 P(1,﹣3),

﹣3=a+1,解得 a=﹣4.

(2)當(dāng) a=﹣4 時,拋物線的解析式為 y=﹣4(x﹣2)2+1.

∴拋物線的開口向下,對稱軸為 x=2,

∴當(dāng) x≤2 時,y x 的增大而增大,

m<n<2,

y1<y2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由甲、乙兩個工程隊承包某校校園綠化工程,甲、乙兩隊單獨完成這項工程所需時間比是3︰2,兩隊合做6天可以完成.

。1)求兩隊單獨完成此項工程各需多少天?

(2)此項工程由甲、乙兩隊合做6天完成任務(wù)后,學(xué)校付給他們20000元報酬,若

按各自完成的工程量分配這筆錢,問甲、乙兩隊各得到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,A,B兩地相距60km,甲、乙分別從AB兩地出發(fā),相向而行,圖2中的分別表示甲、乙離B地的距離ykm)與甲出發(fā)后所用的時間xh)的函數(shù)關(guān)系.以下結(jié)論正確的是( )

A.甲的速度為20km/h

B.甲和乙同時出發(fā)

C.甲出發(fā)1.4h時與乙相遇

D.乙出發(fā)3.5h時到達A

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,ABAC,過其中一個頂點的直線可以把這個三角形分成另外兩個等腰三角形,則∠BAC

A. 36°,90°,, 108°B. 36°,72°,,90°

C. 90°72°,108°,D. 36°,90°108°,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套.根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高5元,銷售量相應(yīng)減少20套.設(shè)銷售單價為xx≥60)元,銷售量為y套.

1)求出yx的函數(shù)關(guān)系式.

2)當(dāng)銷售單價為多少元時,月銷售額為14000元?

3)當(dāng)銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖的底邊剪去一塊邊長 的等邊三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的 )后,得圖,,記第nn≥3)塊紙板的周長為Pn,則Pn-Pn-1=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根竹竿長米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型建立)如圖①,等腰直角三角形ABC中,∠ACB90°,CBCA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E.求證:BEC≌△CDA

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC90°,AD6,CD8BC10,AB2200.求線段BD的長.

應(yīng)用2:如圖 ③,在平面直角坐標(biāo)系中,紙片OPQ為等腰直角三角形,QOQPP4,m),點Q始終在直線OP的上方.

1)折疊紙片,使得點P與點O重合,折痕所在的直線l過點Q且與線段OP交于點M,當(dāng)m2時,求Q點的坐標(biāo)和直線lx軸的交點坐標(biāo);

2)若無論m取何值,點Q總在某條確定的直線上,請直接寫出這條直線的解析式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發(fā)前,汽車油箱內(nèi)儲油45升;當(dāng)行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30.

(1)已知油箱內(nèi)余油量y()是行駛路程x(千米)的一次函數(shù),求yx的函數(shù)關(guān)系式;

(2)當(dāng)油箱中余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案