【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)(﹣1,0)(3,0)兩點(diǎn),給出的下列6個(gè)結(jié)論:
①ab<0;
②方程ax2+bx+c=0的根為x1=﹣1,x2=3;
③4a+2b+c<0;
④當(dāng)x>1時(shí),y隨x值的增大而增大;
⑤當(dāng)y>0時(shí),﹣1<x<3;
⑥3a+2c<0.
其中不正確的有_____.
【答案】⑤
【解析】
①由圖象可知,a>0,b<0,則問(wèn)題可解;②根據(jù)圖象與x軸交點(diǎn),問(wèn)題可解;③由圖象可知,當(dāng)x=2時(shí),對(duì)應(yīng)的點(diǎn)在x軸下方,x=2時(shí),函數(shù)值為負(fù);④由圖象可知,拋物線對(duì)稱軸為直線x=1,當(dāng)x>1時(shí),y隨x值的增大而增大;⑤由圖象可知,當(dāng)y>0時(shí),對(duì)應(yīng)x>3或x<-1;⑥根據(jù)對(duì)稱軸找到ab之間關(guān)系,再代入a﹣b+c=0,問(wèn)題可解.綜上即可得出結(jié)論.
解:①∵拋物線開(kāi)口向上,對(duì)稱軸在y軸右側(cè),與y軸交于負(fù)半軸,
∴a>0,﹣ >0,c<0,
∴b<0,
∴ab<0,說(shuō)法①正確;
②二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)(﹣1,0)(3,0)兩點(diǎn),
∴方程ax2+bx+c=0的根為x1=﹣1,x2=3,說(shuō)法②正確;
③∵當(dāng)x=2時(shí),函數(shù)y<0,
∴4a+2b+c<0,說(shuō)法③正確;
④∵拋物線與x軸交于(﹣1,0)、(3,0)兩點(diǎn),
∴拋物線的對(duì)稱軸為直線x=1,
∵圖象開(kāi)口向上,
∴當(dāng)x>1時(shí),y隨x值的增大而增大,說(shuō)法④正確;
⑤∵拋物線與x軸交于(﹣1,0)、(3,0)兩點(diǎn),且圖象開(kāi)口向上,
∴當(dāng)y<0時(shí),﹣1<x<3,說(shuō)法⑤錯(cuò)誤;
⑥∵當(dāng)x=﹣1時(shí),y=0,
∴a﹣b+c=0,
∴拋物線的對(duì)稱軸為直線x=1=﹣,
∴b=﹣2a,
∴3a+c=0,
∵c<0,
∴3a+2c<0,說(shuō)法⑥正確.
故答案為⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形ABCD中,點(diǎn)E,F是對(duì)角線AC的三等分點(diǎn),點(diǎn)P在正方形的邊上,則滿足PE+PF=的點(diǎn)P的個(gè)數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更新樹(shù)木品種,某植物園計(jì)劃購(gòu)進(jìn)甲、乙兩個(gè)品種的樹(shù)苗栽植培育若計(jì)劃購(gòu)進(jìn)這兩種樹(shù)苗共41棵,其中甲種樹(shù)苗的單價(jià)為6元/棵,購(gòu)買(mǎi)乙種樹(shù)苗所需費(fèi)用y(元)與購(gòu)買(mǎi)數(shù)量x(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買(mǎi)計(jì)劃中,乙種樹(shù)苗的數(shù)量不超過(guò)35棵,但不少于甲種樹(shù)苗的數(shù)量.請(qǐng)?jiān)O(shè)計(jì)購(gòu)買(mǎi)方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個(gè)方面進(jìn)行量化考核.甲、乙、丙、丁兩項(xiàng)得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | 86 | 92 | 80 | 90 |
面試 | 90 | 88 | 94 | 84 |
(1)這4名選手筆試成績(jī)的中位數(shù)是 分,面試的平均數(shù)是 分.
(2)該公司規(guī)定:筆試、面試分別按40%,60%的比例計(jì)入總分,且各項(xiàng)成績(jī)都不得低于85分. 根據(jù)規(guī)定,請(qǐng)你說(shuō)明誰(shuí)將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A(-3,y1)、B(-1,y2)、C(1,y3)三點(diǎn)都在反比例函數(shù)y=(k>0)的圖象上,則y1、y2、y3的大小關(guān)系是( )
A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點(diǎn),且AM=BM.
(1)求點(diǎn)M的坐標(biāo);
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連接AP,BQ.猜想并寫(xiě)出BQ與AP所滿足的數(shù)量關(guān)系,請(qǐng)證明你的猜想;
(2)將△EFP沿直線l向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP,BQ.你認(rèn)為(1)中所猜想的BQ與AP的數(shù)量關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若AC=BC=4,設(shè)△EFP平移的距離為x,當(dāng)0≤x≤8時(shí),△EFP與△ABC重疊部分的面積為S,請(qǐng)寫(xiě)出S與x之間的函數(shù)關(guān)系式,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在甲、乙兩個(gè)不透明的口袋中,分別有4個(gè)和3個(gè)大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上標(biāo)有數(shù)字0,1,2,3,乙口袋中的小球上分別標(biāo)有數(shù)字1,2,3,先從甲口袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字為,再?gòu)囊铱诖须S機(jī)摸出一個(gè)小球,記下數(shù)字為.
(1)請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法表示出所有可能的結(jié)果;
(2)規(guī)定:若都是方程的解時(shí),則小明獲勝;若都不是方程的解時(shí),則小宇獲勝,問(wèn)他們兩人誰(shuí)獲勝的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+與邊AB,BC分別相交于點(diǎn)M,N,函數(shù)y=(x>0)的圖象過(guò)點(diǎn)M.
(1)試說(shuō)明點(diǎn)N也在函數(shù)y=(x>0)的圖象上;
(2)將直線MN沿y軸的負(fù)方向平移得到直線M′N(xiāo)′,當(dāng)直線M′N(xiāo)′與函數(shù)y═(x>0)的圖象僅有一個(gè)交點(diǎn)時(shí),求直線M'N′的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com