(2013•浙江一模)閱讀并解答下列問題:

問題一.如圖1,在?ABCD中,AD=20,AB=30,∠A=60°,點P是線段AD上的動點,連PB,當AP=
15
15
時,PB最小值為
15
3
15
3

問題二.如圖2,四邊形ABCD是邊長為20的菱形,且∠DAB=60°,P是線段AC上的動點,E在AB上,且AE=
1
4
AB
,連PE,PB,問當AP長為多少時,PE+PB的值最小,并求這個最小值.
問題三.如圖3,在矩形ABCD中,AB=20,CB=10,P,Q分別是線段AC,AB上的動點,問當AP長為多少時,PQ+PB的值最小,并求這個最小值.
分析:(1)如圖1,過點B作BP⊥AD于P,根據(jù)直角三角形的性質和勾股定理就可以求出結論;
(2)如圖2,連接BD、ED交AC于點P,作DF⊥AB于F.由菱形的性質可以得出AC的值,再由△APE∽△CPD就根據(jù)相似三角形的性質就可以得出結論;
(3)作B關于AC的對稱點B′,連結AB′,則N點關于AC的對稱點N′在AB′上,這時,B到M到N的最小值等于B→M→N′的最小值,等于B到AB′的距離BH′,連結B與AB′和DC的交點P,再由三角形的面積公式可求出S△ABP的值,根據(jù)對稱的性質可知∠PAC=∠BAC=∠PCA,利用勾股定理可求出PA的值,再由S△ABP=
1
2
PA•BH′即可求解.
解答:解:(1)如圖1,過點B作BP⊥AD于P,
∴∠APB=90°.
∵∠A=60°,
∴∠ABP=30°,
∴AP=
1
2
AB.
∵AB=30,
∴AP=15.
在Rt△ABP中,由勾股定理,得
BP=
302-152
=15
3


(2)如圖2,連結BD,連結DE交AC于點P,作DF⊥AB于F.
∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD.AC⊥BD,DO=BO=
1
2
DB,AO=CO=
1
2
AC,∠OAB=
1
2
∠DAB.
∵∠DAB=60°,
∴△ABD和△CDB是等邊三角形,
∴AF=
1
2
AB=10,.
在Rt△ADF中,由勾股定理,得
DF=10
3

∵AE=
1
4
AB,且AB=20,
∴AE=5.
∴EF=5.
在Rt△EFD中,由勾股定理,得
DE=
300+25
=5
13
,
∴BP+PE的最小值為5
13

在Rt△ABO中,由勾股定理,得
AO=10
3

∴AC=20
3

∴△AEP∽△CDP,
AE
DC
=
AP
PC

5
20
=
AP
20
3
-AP

∴AP=4
3

答:當AP長為4
3
時,PE+PB的值最小為5
13


(3)如圖3,作B關于AC的對稱點B′,作B′Q⊥QB于Q,交AC于P.
連結AB′,則Q點關于AC的對稱點H′在AB′上,
∴∠AHB=∠AHB′=90°,BH=B′H,
∴AB′=AB,
∴∠AB′H=∠ABH.
這時,B到P到Q的最小值等于B→P→H′的最小值,
等于B到AB′的距離BH′,
連結AB′和DC的交點E,
則S△ABE=
1
2
×20×10=100,
由對稱知識,∠EAC=∠BAC=∠ECA,
所以EA=EC,令EA=x,則EC=x,ED=20-x,
在Rt△ADE中,EA2=ED2+AD2,
所以x2=(20-x)2+102
所以x=12.5,
因為S△ABE=
1
2
EA•BH′,
所以BH′=
2S△ABE
EA
=
100×2
12.5
=16.
在△BB′H′和△B′BQ中,
∠AB′H=∠ABH
∠BH′B′=∠B′QB
BB′=B′B

∴△BB′H′≌△B′BQ(SAS),
∴BH′=B′Q=10.
在Rt△ABC中,由勾股定理,得
AC=10
5

∵S△ABC=
AB•BC
2
=
AC•BH
2
,
20×10
2
=
10
5
•BH
2
,
∴BH=4
5
,
∴BB′=8
5

在Rt△BB′Q中,由勾股定理,得
QB=8,
∴AQ=12.
∵PQ⊥AB,
∴∠AQP=90°,且∠ABC=90°,
∴PQ∥BC.
∴△AQP∽△ABC,
AP
AC
=
AQ
AB

AP
10
5
=
12
20
,
∴AP=6
5

答:AP長為6
5
時,PQ+PB的值最小為16.
故答案為:15,15
3
點評:本題考查的是最短路線問題,考查軸對稱的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,相似三角形的判定及性質的運用,等邊三角形的性質的運用,解答第三問時作出B點關于直線AC對稱的點B′是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•浙江一模)計算:(π-
2
)0+(
1
3
)-1+2cos30°-|-
3
|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•浙江一模)如圖,已知在平面直角坐標系中,點A(4,0)、B(-3,0),點C在y軸正半軸上,且tan∠CAO=1,點Q是線段AB上的動點,過點Q作QE∥AC交BC于點E.
(1)求點C的坐標及直線BC的解析式;
(2)連結CQ,當△CQE的面積最大時,求點Q的坐標;
(3)若點P是線段AC上的點,是否存在這樣的點P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•浙江一模)“誰知盤中餐,粒粒皆辛苦”.有統(tǒng)計數(shù)據(jù)顯示,中國人每年在餐桌上浪費的糧食價值高達2000億元,被倒掉的食物相當于2億多人一年的口糧.現(xiàn)在,從中央到地方都在倡導勤儉節(jié)約,拒絕鋪張浪費的“光盤行動”.其中2000億元用科學記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•浙江一模)實數(shù)在數(shù)軸上的位置如圖所示,下列式子正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•浙江一模)分式方程
3x-5
x-2
-
x-1
x-2
=1
的解是( 。

查看答案和解析>>

同步練習冊答案