【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是0上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn)C.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AC=4,CE=2,求⊙O半徑的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是的直徑,點(diǎn)C、D在上,且AD平分,過(guò)點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于E,與AB的延長(zhǎng)線相交于點(diǎn)F,G為AB的下半圓弧的中點(diǎn),DG交AB于H,連接DB、GB.
證明EF是的切線;
求證:;
已知圓的半徑,,求GH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某同學(xué)在大樓AD的觀光電梯中的E點(diǎn)測(cè)得大樓BC樓底C點(diǎn)的俯角為45°,此時(shí)該同學(xué)距地面高度AE為20米,電梯再上升5米到達(dá)D點(diǎn),此時(shí)測(cè)得大樓BC樓頂B點(diǎn)的仰角為37°,求大樓的高度BC.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名同學(xué)分別用標(biāo)有數(shù)字0、﹣1、4的三張卡片(除了數(shù)字不同以外,其余都相同)做游戲,他們將卡片洗勻后,將標(biāo)有數(shù)字的一面朝下放在桌面上,甲先隨機(jī)抽取一張,抽出的卡片放回,乙再?gòu)娜龔埧ㄆ须S機(jī)抽取一張.若規(guī)定甲同學(xué)抽到卡片上的數(shù)字比乙同學(xué)抽取到卡片上的數(shù)字大,則甲同學(xué)獲勝;否則乙同學(xué)獲勝.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求哪名同學(xué)獲勝的概率大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點(diǎn)P繞點(diǎn)T(0,t)(t>0)旋轉(zhuǎn)180°得到點(diǎn)Q,那么稱(chēng)線段QP為“拓展帶”,點(diǎn)Q為點(diǎn)P的“拓展點(diǎn)”.
(1)當(dāng)t=3時(shí),點(diǎn)(0,0)的“拓展點(diǎn)”坐標(biāo)為 ,點(diǎn)(﹣1,1)的“拓展點(diǎn)”坐標(biāo)為 ;
(2)如果 t>1,當(dāng)點(diǎn)M(2,1)的“拓展點(diǎn)”N在函數(shù)y=﹣的圖象上時(shí),求t的值;
(3)當(dāng)t=1時(shí),點(diǎn)Q為點(diǎn)P(2,0)的“拓展點(diǎn)”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”P(pán)Q有交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷(xiāo)售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷(xiāo)售方案中選擇一種進(jìn)行銷(xiāo)售:①若只在國(guó)內(nèi)銷(xiāo)售,銷(xiāo)售價(jià)格y(元/件)與月銷(xiāo)量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤(rùn)為W內(nèi)(元);②若只在國(guó)外銷(xiāo)售,銷(xiāo)售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷(xiāo)量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),月利潤(rùn)為W外(元).
(1)若只在國(guó)內(nèi)銷(xiāo)售,當(dāng)x=1000(件)時(shí),y= (元/件);
(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫(xiě)x的取值范圍);
(3)若在國(guó)外銷(xiāo)售月利潤(rùn)的最大值與在國(guó)內(nèi)銷(xiāo)售月利潤(rùn)的最大值相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為一圓洞門(mén).工匠在建造過(guò)程中需要一根橫梁AB和兩根對(duì)稱(chēng)的立柱CE、DF來(lái)支撐,點(diǎn)A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.
(1)求出圓洞門(mén)⊙O的半徑;
(2)求立柱CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com