(2008•株洲)(1)已知x2-9=0,求代數(shù)式x2(x+1)-x(x2-1)-x-7的值;
(2)解方程:2x2-5x-7=0.
【答案】分析:(1)先化簡,代入即可求值;
(2)解一元二次方程可用公式法求解,首先確定a,b,c的值,然后檢驗方程是否有解,若有解代入公式即可求解.
解答:解:(1)由x2-9=0得x2=9,
則原式=x3+x2-x3+x-x-7=x2-7=9-7=2.
(2)∵a=2,b=-5,c=-7;
∴b2-4ac=81.
解得x=,
則x1=,x2=-1.
點評:本題解題思路是把x2看作一個整體,利用整體代入法求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2008•株洲)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,-2),點B的坐標(biāo)為(3,-1),二次函數(shù)y=-x2的圖象為l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的拋物線的一個解析式(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A、B兩點,記拋物線為l2,如圖2,求拋物線l2的函數(shù)解析式及頂點C的坐標(biāo);
(3)設(shè)P為y軸上一點,且S△ABC=S△ABP,求點P的坐標(biāo);
(4)請在圖2上用尺規(guī)作圖的方式探究拋物線l2上是否存在點Q,使△QAB為等腰三角形?若存在,請判斷點Q共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2008•株洲)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,-2),點B的坐標(biāo)為(3,-1),二次函數(shù)y=-x2的圖象為l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的拋物線的一個解析式(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A、B兩點,記拋物線為l2,如圖2,求拋物線l2的函數(shù)解析式及頂點C的坐標(biāo);
(3)設(shè)P為y軸上一點,且S△ABC=S△ABP,求點P的坐標(biāo);
(4)請在圖2上用尺規(guī)作圖的方式探究拋物線l2上是否存在點Q,使△QAB為等腰三角形?若存在,請判斷點Q共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖南省株洲市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•株洲)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,-2),點B的坐標(biāo)為(3,-1),二次函數(shù)y=-x2的圖象為l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的拋物線的一個解析式(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A、B兩點,記拋物線為l2,如圖2,求拋物線l2的函數(shù)解析式及頂點C的坐標(biāo);
(3)設(shè)P為y軸上一點,且S△ABC=S△ABP,求點P的坐標(biāo);
(4)請在圖2上用尺規(guī)作圖的方式探究拋物線l2上是否存在點Q,使△QAB為等腰三角形?若存在,請判斷點Q共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(02)(解析版) 題型:選擇題

(2008•株洲)如圖,在△ABC中,D、E分別是AB、AC邊上的中點,若BC=6,則DE等于( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《概率》(02)(解析版) 題型:選擇題

(2008•株洲)今年我市約有36000學(xué)生參加初中畢業(yè)會考,為了了解這36000名學(xué)生的數(shù)學(xué)成績,準(zhǔn)備從中隨機抽取1200名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計分析,那么你的數(shù)學(xué)成績被抽中的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案